
J. Parallel Distrib. Comput. 71 (2011) 77–86
Contents lists available at ScienceDirect

J. Parallel Distrib. Comput.

journal homepage: www.elsevier.com/locate/jpdc

Contention-aware scheduling with task duplication✩

Oliver Sinnen ∗, Andrea To, Manpreet Kaur
Department of Electrical and Computer Engineering, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand

a r t i c l e i n f o

Article history:
Received 18 February 2010
Received in revised form
5 October 2010
Accepted 7 October 2010
Available online 15 October 2010

Keywords:
Task scheduling
Contention-aware algorithm
Edge scheduling
Task duplication

a b s t r a c t

Finding an efficient schedule for a task graph on several processors is a trade-off between maximising
concurrency and minimising interprocessor communication. Task duplication is a technique that has
been employed to reduce or avoid interprocessor communication. Certain tasks are duplicated on
several processors to produce the data locally and avoid the communication among processors. Most
of the algorithms using task duplication have been proposed for the classic scheduling model, which
allows concurrent communication and ignores contention for communication resources. It is increasingly
recognised that this classic model is unrealistic and does not permit creating accurate and efficient
schedules. The recently proposed contentionmodel introduces contention awareness into task scheduling
by assigning the edges of the task graph to the links of the communication network. It is intuitive that
scheduling under such a model benefits even more from task duplication, yet no such algorithm has
been proposed as it is not trivial to duplicate tasks under the contention model. This paper proposes
a contention-aware task duplication scheduling algorithm. We investigate the fundamentals for task
duplication in the contentionmodel and propose an algorithm that is based on state-of-the-art techniques
found in task duplication and contention-aware algorithms. An extensive experimental evaluation
demonstrates the significant improvements to the speedup of the produced schedules.

© 2010 Elsevier Inc. All rights reserved.
1. Introduction

Parallelising a program is a challenging task. One crucial aspect
in this parallelisation of a program is the scheduling of the
(sub)tasks on the processors of the parallel system. In the task
scheduling area, a program is represented as a directed acyclic
graph, called a task graph, where the nodes represent the tasks
and the edges represent the communications between the tasks.
Scheduling such a task graph on a set of processors for fastest
execution is a well-known NP-hard optimisation problem [22,30],
and many heuristics have been proposed [7,9,14,20,31,32,12]. The
heuristics have to find the trade-off between high concurrency,
i.e. tasks are distributed across the available processors as much
as possible, and low interprocessor communication, as this is time
consuming and negates the benefit of parallelisation.

Task duplication is a well-known technique to reduce the
necessary communication between the processors. In this tech-
nique, certain crucial tasks are executed on more than one pro-
cessor. The data they process is then locally available on differ-
ent processors and less communication has to be sent between the

✩ A shorter preliminary version of themanuscript appeared in the proceedings of
JSSPP’09.
∗ Corresponding author.

E-mail address: o.sinnen@auckland.ac.nz (O. Sinnen).

0743-7315/$ – see front matter© 2010 Elsevier Inc. All rights reserved.
doi:10.1016/j.jpdc.2010.10.004
processors. Again, many algorithms have been proposed that in-
corporate this technique into scheduling [3,8,14,15,18,19,21].

Communication is not only a problem on the algorithmic
level, but also for the scheduling model itself. The classic model
used by most scheduling algorithms heavily idealises the target
parallel system. It is assumed that all communication can happen
at the same time and that all processors are fully connected;
in other words, that there is no contention for communication
resources. It is now increasingly recognised that this classic
model is not realistic, and that it does not suffice for accurate
and efficient task scheduling [2,4,10,16,17,27–29]. Contention-
aware scheduling algorithms depart from the classic model,
and schedule not only the tasks, but also the edges on the
communication resources. The one-port model is a simple model
that considers end-point contention [2], which is generalised in
the contention model that allows one to consider end-point and
network contention in arbitrary types of network [25,27].

It is intuitive that avoiding or reducing interprocessor commu-
nication becomes more important under the contention model.
Consequently, task duplication should be more beneficial under
this model. To the authors’ best knowledge, however, no task du-
plication algorithm to be used under a contention model has been
proposed. In this paper, we propose a contention-aware task dupli-
cation scheduling algorithm. Itworks under the general contention
model, and its algorithmic components are based on state-of-
the-art techniques used in task duplication and contention-aware

http://dx.doi.org/10.1016/j.jpdc.2010.10.004
http://www.elsevier.com/locate/jpdc
http://www.elsevier.com/locate/jpdc
mailto:o.sinnen@auckland.ac.nz
http://dx.doi.org/10.1016/j.jpdc.2010.10.004

78 O. Sinnen et al. / J. Parallel Distrib. Comput. 71 (2011) 77–86
algorithms. We investigate the fundamental changes to the
scheduling model and discuss the proposed algorithm. An ex-
tensive experimental evaluation shows that our algorithm is far
superior to contention-aware algorithms that do not use task
duplication and to task duplication algorithms under the classic
model.

We continue in the next section with a background on task
scheduling, including the different models and basic algorithmic
techniques. Section 3 then investigates the general consequences
of task duplication under the contention model. In Section 4, we
propose our novel algorithm, which is evaluated in Section 5 in
comprehensive experiments. Section 6 concludes the paper.

2. Task scheduling

The program to be scheduled is represented by a directed
acyclic graph (DAG), called a task graph, G = (V, E, w, c). The
nodes V represent the program’s tasks and the edges E the com-
munications between them. An edge eij ∈ E represents the com-
munication from node ni to node nj. The positive weight w(n) of
node n ∈ V represents its computation cost and the non-negative
weight c(eij) of edge eij ∈ E represents its communication cost.

The set {nx ∈ V : exi ∈ E} of all direct predecessors of ni is
denoted by pred(ni) and the set {nx ∈ V : eix ∈ E} of all direct
successors of ni is denoted by succ(ni). A node n ∈ V without pre-
decessors, pred(n) = ∅, is named a source node, and if it is without
successors, succ(n) = ∅, it is named a sink node.

A schedule of a task graph on a target system consisting of
a set P of dedicated processors is the association of a start time
and a processor with each of its nodes: ts(n, P) denotes the start
time of node n ∈ V on processor P ∈ P. The node’s finish time
is given by tf (n, P) = ts(n, P)+w(n), i.e. the node’s start time plus
its computation costs, as homogeneous processors are assumed
in this work. The processor to which n is allocated is denoted
by proc(n). Further, let tf (P) = maxn∈V:proc(n)=P{tf (n, P)} be the
processor finish time of P and let sl(S) = maxn∈V{tf (n, proc(n))}
be the schedule length (or makespan) of S, assuming that
minn∈V{ts(n, proc(n))} = 0.

For such a schedule to be feasible, the following two conditions
must be fulfilled for all nodes in G. The Processor Constraint
enforces that only one task is executed by a processor at any point
in time, which means that, for any two nodes ni, nj ∈ V,

proc(ni) = proc(nj) = P ⇒


tf (ni, P) ≤ ts(nj, P)

or tf (nj, P) ≤ ts(ni, P).
(1)

The Precedence Constraint enforces that, for every edge eij ∈

E, ni, nj ∈ V, the destination node nj can only start after the
communication associated with eij has arrived at nj’s processor P:

ts(nj, P) ≥ tf (eij, proc(ni), P). (2)
tf (eij, Psrc, Pdst) is the edge finish time of eij communicated from
Psrc to Pdst, which is defined later, depending on the scheduling
model. From a task perspective, the earliest time a node nj can start
execution on processor P is called the data ready time (DRT) tdr,
with
tdr(nj, P) = max

eij∈E,ni∈pred(nj)
{tf (eij, proc(ni), P)}, (3)

and hence
ts(n, P) ≥ tdr(n, P) (4)
for all n ∈ V. If pred(n) = ∅, i.e. n is a source node, tdr(n) =

tdr(n, P) = 0, for all P ∈ P.

2.1. Classic scheduling

Traditionally, most scheduling algorithms have employed a
strongly idealised model of the target parallel system [7,9,14,20,
31,32], called the classic model.
Definition 1 (Classic System Model). A parallel system Mclassic =

P consists of a finite set of dedicated processors P connected
by a communication network. This dedicated system has the
following properties: (i) local communication has zero costs;
(ii) communication is performed by a communication subsystem;
(iii) communication can be performed concurrently; (iv) the
communication network is fully connected.

Based on this system model, the edge finish time only depends
on the finish time of the origin node and the communication time.

Definition 2 (Edge Finish Time). The edge finish time of eij ∈ E is
given by

tf (eij, Psrc, Pdst) = tf (ni, Psrc) +


0 if Psrc = Pdst
c(eij) otherwise. (5)

Thus, communication can overlap with the computation of
other nodes, an unlimited number of communications can be
performed at the same time, and communication has the same cost
c(eij), regardless of the origin and the destination processor, unless
the communication is local.

2.2. Heuristics

The scheduling problem is to find a schedule with minimal
length. As this problem is NP-hard [22,30], many heuristics have
been proposed for its solution. A heuristic must schedule a node
on a processor so that it fulfils all resource (1) and precedence (2)
constraints. A free node n ∈ V can be scheduled on processor P
within the idle time interval [A, B], A, B ∈ [0, ∞], i.e. an interval
in which no task is executed, if
max{A, tdr(n, P)} + w(n) ≤ B. (6)
A free node is a node whose predecessors have already been
scheduled, which is a requisite for the calculation of the data ready
time. So, this condition allows node n to be scheduled between
already scheduled nodes (insertion technique) [13], i.e. [A, B] =

[tf (nPl , P), ts(nPl+1 , P)], or after the finish time of processor P (end
technique) [1], i.e. [A, B] = [tf (P), ∞].

2.2.1. List scheduling
The best-known scheduling heuristic is list scheduling (see

e.g. [1]), as given in Algorithm 1. In this simple, but common,
variant of list scheduling, the nodes are ordered according to a
priority in the first part of the algorithm. The schedule order of
the nodes is important for the schedule length, andmany different
priority schemes have been proposed [1,11,25,31]. A common and
usually good priority is the node’s bottom level bl, which will be
presented in Section 4.

Algorithm 1 List scheduling
1: ◃ 1. Part:
2: Sort nodes n ∈ V into list L, according to priority scheme and

precedence constraints.
3: ◃ 2. Part:
4: for each n ∈ L do
5: Find processor P ∈ P that allows the earliest finish time of n.
6: Schedule n on P .
7: end for

To determine the start time of a node, the earliest interval [A, B]
is searched on each processor that complies with (6), using either
the insertion or the end technique. For the found interval [A, B], the
start time of node n is determined as
ts(n, P) = max{A, tdr(n, P)}. (7)
Node n is scheduled on the processor that allows the earliest finish
time tf (n, P) = ts(n, P) + w(n).

O. Sinnen et al. / J. Parallel Distrib. Comput. 71 (2011) 77–86 79
2.3. Contention-aware scheduling

The classic scheduling model (Definition 1) does not consider
any kind of contention for communication resources. To make
task scheduling contention aware, and thereby more realistic,
the communication network is modelled by a graph, in which
processors are represented by vertices and the edges reflect the
communication links. The awareness for contention is achieved by
edge scheduling [23], i.e. the scheduling of the edges of the task
graph onto the links of the network graph, in a very similarmanner
to how the nodes are scheduled on the processors.

The network model proposed in [27] captures network [23,25]
as well as end-point contention [2,10,17] and can represent
heterogeneous communication links. This is achieved by using
different types of edge and by using switch vertices in addition
to processor vertices. Here, it suffices to define the topology
network graph to be TG = (P, L), where P is a set of vertices
representing the processors and L is a set of edges representing the
communication links. The systemmodel is then defined as follows.

Definition 3 (Target Parallel System—Contention Model). A target
parallel system MTG = TG consists of a set of processors P con-
nected by the communication network TG = (P, L). This dedicated
systemhas the following properties: (i) local communications have
zero costs; (ii) communication is performed by a communication
subsystem.

The notions of concurrent communication and a fully connected
network found in the classic model (Definition 1) are substituted
by thenotion of scheduling the edgesEon the communication links
L. Corresponding to the scheduling of the nodes, ts(e, L) and tf (e, L)
denote the start time and the finish time of edge e ∈ E on link L ∈ L,
respectively.

When a communication, represented by edge e, is performed
between twodistinct processors Psrc and Pdst, the routing algorithm
of TG returns a route from Psrc to Pdst: R = ⟨L1, L2, . . . , Ll⟩, Li ∈ L
for i = 1, . . . , l. Edge e is scheduled on each link of the route. For
details of the scheduling of the edges on the links and the topology
graph, refer to [27].

It is important to realise that the edge scheduling only affects
the scheduling of the tasks through a redefinition of the edge finish
time, when compared with the classic model (Definition 2).

Definition 4 (Edge Finish Time—Contention Model). Let R = ⟨L1,
L2, . . . , Ll⟩ be the route for the communication of eij ∈ E from Psrc
to Pdst if Psrc ≠ Pdst. The finish time of eij is

tf (eij, Psrc, Pdst) =


tf (ni, Psrc) if Psrc = Pdst
tf (eij, Ll) otherwise. (8)

Thus, the edge finish time tf (eij, Psrc, Pdst) is now the finish time
of eij on the last link of the route, Ll, unless the communication
is local. As nothing else changes for the scheduling of the tasks,
most scheduling heuristics proposed for the classic model can
also be used under the contention model, thereby making them
contention aware. This is in particular true for list scheduling [25].

3. Duplication in contention-aware scheduling

Scheduling a task graph is a trade-off between maximising the
concurrency and minimising the interprocessor communication
costs. It often happens that the advantage of executing tasks in par-
allel is negated by the associated interprocessor communication
cost. It is intuitive that this is even more pronounced under the
more realistic contention model, where contention can increase
the communication delay.
Fig. 1. Task duplication example under the classicmodel: task graph (left) and task
schedule (right).

Task duplication is a well-known technique that tries to reduce
the communication costs by scheduling certain tasks onmore than
one processor. The function proc(n) for the processor allocation of
node n becomes a subset of P , denoted by proc(n), proc(n) ⊆ P
and |proc(n)| ≥ 1. The communication from these duplicated
nodes then becomes local on their allocated processors, avoiding
costly interprocessor communication. Fig. 1 displays an example,
in which a simple task graph is scheduled on four processors
using task duplication. Both task A and task B are scheduled
more than once, i.e. duplicated, which renders all the expensive
communications (eAC , eAD, eBE, eBF) local.

Many algorithms have been proposed using task
duplication [3,8,14,15,18,19,21]. The irony is that most of them
have been proposed for the classic model, even though avoiding
interprocessor communication under themore realistic contention
model can be much more crucial. This paper proposes a novel task
duplication algorithm for the contention model. In this section, we
will study the general consequence for the scheduling of the nodes,
and the next section proposes a contention-aware task duplication
algorithm. First, let us look at task duplication under the classic
model.

3.1. Under the classic model

Task duplication has an impact on the formulation of the
Precedence Constraint, Eq. (2). For a schedule Sdup with node
duplication, (2) becomes
ts(nj, P) ≥ min

Px∈proc(ni)
{tf (eij, Px, P)}. (9)

Given the communication eij, node nj cannot start until at
least one instance of the duplicated nodes of ni has provided the
communication eij. In the example of Fig. 1, tasks E and F receive
communication from taskA ofwhich two instances exist (on P1 and
on P2). Here, the communication of either one arrives at the same
time at P3 and P4, due to A’s identical finish time on both.

Following from the altered Precedence Constraint condition,
the definition of the data ready time (Eq. (3)) must be adapted. For
a schedule Sdup with node duplication, (3) becomes

tdr(nj, P) = max
ni∈pred(nj)


min

Px∈proc(ni)
{tf (eij, Px, P)}


. (10)

The rest of the definitions and conditions of task scheduling
remain unmodified.

3.2. Under the contention model

Task duplication under the contention model changes sig-
nificantly in regard to the Precedence Constraint. Under the
contention model, it must be strictly defined from where a
communication is sent if there are several instances of a sending
task. See Fig. 2, where the same task graph as in Fig. 1 is scheduled,
now under the contention model, on four processors connected
to a central ideal switch (left). Ideal means there is no contention
within the switch [27]. As in Fig. 1, two communications are re-
mote. Edge eAE is scheduled on links L2 and L3 (route from P2 to P3),

80 O. Sinnen et al. / J. Parallel Distrib. Comput. 71 (2011) 77–86
Fig. 2. Task duplication under the contention model: four-processor system (left), task and edge schedule (right).
Fig. 3. Contention on L2 delays communication eAF , and increases the schedule
length.

and eAF on links L1 and L4 (route from P1 to P4). In otherwords, both
instances of A are sending out data, but each only one edge.

Because of the contention model, it is actually important that
eAE and eAF are sent from different processors, as can be observed
in Fig. 3, where both are sent from P2. Due to contention on L2, eAF
is delayed, and it therefore arrives one time unit later at P4, which
in turn increases the schedule length through F ’s later start time.

The consequence from this observation is that it must be
decided during the scheduling of the tasks and edges which
instance of a duplicated task sends the communication. The
formulation of the Precedence Constraint for task duplication
under the contention model then looks the same as without
duplication (Eq. (2)):

ts(nj, P) ≥ tf (eij, Psrc, P) (11)

with Psrc ∈ proc(ni). Psrc is the processor from where eij is
routed and scheduled to P . As this duplication is done under the
contentionmodel, the finish time of the edge remains as defined in
Definition 4; that is, it corresponds to the finish time of the edge on
the link entering the destination processor; for example, in Fig. 3,
the finish time of eAF is tf (eAF , P2, P4) = tf (eAF , L4) = 3.

For contention-aware scheduling, not only is the above-
discussed duplication of the origin node of an edge relevant, but
also the duplication of the destination node. Several instances of
a node nj might exist; thus an incoming edge eij might be sent
several times to different processors, possibly from the same source
processor on which ni is executed. It follows that an incoming
edge eij of a duplicated node nj might be scheduled on a single
link more than once. To illustrate this, consider the example of
Fig. 4, in which the task graph on the left has been scheduled
on the four-processor system of Fig. 2. Node C is duplicated on
P2 and P3, so edge eAC must be sent twice, once to P2 and once
to P3. Observe that C is a duplicated destination node of eAC . In
the figure, the two instances of C and eAC are distinguished with
superscripts 1 and 2, respectively.1 As all communications from P1
go through link L1, eAC has been scheduled twice on L1. This kind of
scheduling corresponds to point-to-point communication used in

1 Also duplicating A would of course avoid all communication (Fig. 5). However,
this might not be beneficial in general; e.g. P2 and P3 are busy with other,
independent, nodes. For illustration purposes, a simple task graph was used.
most parallel communication networks [5]. An intelligent network
could of course avoid the duplication of eAC on L1 by using a multi-
cast primitive; however, many parallel computer networks do not
support multi-casts. Apart from this, the duplicated edges are not
necessarily sent at the same time, in which case multi-cast could
not be employed.

Finally, note that, while an edge might be sent more than once,
it never arrives more than once at the same processor.

A scheduling algorithm must carefully choose from which task
a communication is sent when several instances exist so that the
communication edge can be scheduled and an accurate view of
the contention is gained. Under the contention model, this choice
is made by tentatively scheduling the edges on the links of the
different routes to see fromwhere the communication arrives first,
as will be seen in the following section [27].

4. Algorithm

The contention-aware task duplication scheduling algorithm
proposed in this section is based on scheduling algorithms for the
contention model and task duplication techniques used under the
classicmodel. In the followingwe present and discuss its elements.
List scheduling. As the general algorithmic approach, list schedul-
ing, as given in Algorithm 1, is chosen. List scheduling is easily
adaptable to the contention model, as shown in [25]. In the first
phase, the nodes are ordered according to their non-increasing bot-
tom levels bl(n), the bottom length being the length of the longest
path leaving the node. Recursively defined,

bl(ni) = w(ni) + max
nj∈succ(ni)

{c(eij) + bl(nj)}. (12)

This bottom level was shown to be the superior node priority un-
der the contention model in an extensive experimental evalua-
tion [25]. Algorithm 2 outlines our proposed algorithm.

Algorithm 2 Contention-aware task duplication scheduling algo-
rithm.
1: ◃ 1. Part:
2: Sort nodes n ∈ V into list L, according to non-increasing bl(n)
3: ◃ 2. Part:
4: for each n ∈ L do
5: for each P ∈ P do
6: Tentatively schedule n, recursively duplicating n’s critical

parent — record the best finish time tf (n, P) and ancestors
to be duplicated, if any

7: end for
8: Let Pmin be processor where n can finish earliest
9: Duplicate recorded ancestors of n on Pmin

10: Schedule n on Pmin
11: Remove redundant tasks and their in-edges
12: end for

Insertion technique. During list scheduling, each task can be
scheduled between already scheduled tasks (insertion technique)

O. Sinnen et al. / J. Parallel Distrib. Comput. 71 (2011) 77–86 81
Fig. 4. Edge eAC is scheduled twice on link L1: once for the communication to processor P2 (1) and once for the communication to P3 (2).
or after the finish time of processor P (end technique) (see
Section 2.2). The same principle applies of course to the
scheduling of the edges on the links. While the insertion technique
already usually produces superior results for scheduling without
duplication, it can be even more beneficial for task duplication
as a duplicated task can then be inserted into the existing partial
schedule. For that reason, the insertion technique is employed.
Critical parent. An essential question for task duplication algo-
rithms is which tasks should be duplicated.When a task n is sched-
uled on a processor P , the primary candidates for duplication are
its predecessorspred(n), or parents. As task duplication algorithms
have shown, it is usually not beneficial to duplicate all prede-
cessors. The most important task to duplicate is the task from
which the data transfer arrives the latest, called the critical par-
ent, cp(n) [8]. Defined with the edge finish time, the critical parent
is given by

cp(n) = nx ∈ pred(n) : tf (enx,n, proc(nx), P)

= max
eij∈E,ni∈pred(n)

{tf (eni,n, proc(ni), P)}. (13)

Under the contention model, cp(n) is the origin node of edge
ecp(n),n with the highest finish time tf (ecp(n),n, Ll) on link Ll entering
processor P . If that communication ecp(n),n can be made local, task
nmight start earlier. Hence, our proposed algorithm considers the
critical parent for duplication. The duplication is accepted if task
n can start earlier. Note that with the end technique the critical
parent is always the onewhose corresponding edgewas scheduled
last in the heuristic, which is not necessarily the case with the
insertion technique.
Recursive duplication. In some situations it can be more beneficial
to not only duplicate the critical parent, but also to consider the
predecessors of the critical parent for duplication. Task duplication
algorithms therefore consider the recursive duplication of the
critical parent cp(n), its critical parent cp(cp(n)), and so on [6].
Fig. 5 shows the schedule example of Fig. 4, in which now also
A, i.e. the critical parent of the critical parent of D and E, is
duplicated. This approach is adopted by our algorithm as outlined
in Algorithm 3. This procedure is a more detailed description of
line 6 in Algorithm 2. The first step is to create the recursive list of
the critical parent, its parent, and so on. This is done until the first
of those critical ancestors is already on the same processor P on
which the candidate task n is going to be scheduled. Going further
is unnecessary, as the duplication of more distant ancestors would
have been considered at the time this ancestor was scheduled on
P . This list is now taken, all ancestors are duplicated, and the finish
time of the candidate task n is recorded. After that, the first task of
the list, i.e. the most distant ancestor, is removed and the process
is repeated. In this way, the algorithm evaluates how deep the
duplication of ancestors should go.

Note thatwith this procedure all critical ancestors until a certain
depth are duplicated. Not duplicating consecutive ancestors does
not seem to bemeaningful, as communication would then go from
P to another processor and back for the non-duplicated ancestor.
Fig. 5. Not only is the critical parent of D and E(C) duplicated but also C ’s critical
parent A (Fig. 4).

Algorithm 3 Finding the best critical ancestor duplication for n.
1: Recursively prepend critical ancestors of n to list A, until critical

ancestor already on P
2: while A not empty do
3: for each taskm ∈ A do
4: Schedule incoming edges of m on links (if there are

duplicated origin tasks, find the best origin task)
5: Schedule m on P
6: end for
7: Schedule n on P
8: if tf (n, P) < minFT then
9: minFT = tf (n, P)

10: ancestorsToDuplicate = A
11: end if
12: Undo all scheduling of tasks (n and tasks of A) on P and their

incoming edges
13: Remove first task from A
14: end while
15: return minFT and ancestorsToDuplicate

Tentative scheduling. A characteristic aspect of scheduling under
the contention model is the need to tentatively schedule edges on
the communication links in order to obtain the data ready time
tdr(n, P) of a task n. For example, we search for the processor
that allows task ni’s earliest finish time, and ni has the in-
edges eli and eki. Then, for each processor P , we must schedule
the communication on the links of the route from proc(nl) and
proc(nk) to P . That gives us an accurate data ready time of ni
on P . Before the next processor is considered, the edges must be
removed from the schedule, hence we have tentative scheduling.
With task duplication, this tentative scheduling is even more
involved, as there might be more than one instance of nl and nk,
as seen with task A in the example of Figs. 2 and 3. Our algorithm
therefore integrates tentative scheduling also on this level, i.e. the
communication is tentatively scheduled from each instance of
a predecessor task in order to find the best data provider. In
Algorithm 3, the tentative scheduling is apparent in two places:
at the scheduling of the incoming edges (line 4), as the best origin

82 O. Sinnen et al. / J. Parallel Distrib. Comput. 71 (2011) 77–86
task needs to be identified, and at the end of trying each ancestor
depth (line 12) when all scheduled tasks and edges are removed.
Redundant task/edge removal. When a task n is duplicated on
processor P , the original and other instances of n might have
become redundant. This is the case if one or more of these
instances do not provide data to any predecessor. In other words,
the duplicated instance on P fully substitutes other instances—
they have become redundant. This is always the case when a
task has only one predecessor, i.e. one out-edge [24]. In such
a case, the redundant tasks can and should be removed from
the schedule. Under the contention model, the removal of a task
implies that also its in-edges can be removed from the links.
Especially together with the insertion technique, the freed space
can be used by subsequently scheduled tasks and their edges,
potentially leading to shorter schedules. Our algorithm checks for
and removes redundant tasks after the scheduling of each task.

Algorithm 2 summaries our proposed contention-aware task
duplication scheduling algorithm and Algorithm 3 gives details of
the task duplication and its tentative scheduling.
Complexity. The complexity of the first part of Algorithm 2 is
O(|V| log |V| + |E|) for the calculation and sorting of the bottom
levels [24], and this can be ignored in comparison to the second
part.

In the secondpart of the proposed contention-aware scheduling
algorithm, the complexity is dominated by the tentative schedul-
ing of the incoming edges of all the tasks that are considered in
each step. The two outer loops iterate over all tasks (line 4 of
Algorithm 2) and all processors (line 5). For each task n on each
processor P , i.e. |P| |V| times, the algorithm then determineswhich
(critical) ancestors of n should be duplicated (line 6). This proce-
dure, as detailed in Algorithm 3, defines the total complexity. The
actual scheduling of n, the duplication of the selected set of an-
cestors, and the scheduling of all incoming edges (lines 8–10) can
be neglected, as this is just a single repetition of the best solution
found in Algorithm 3. Also, the removal of redundant nodes and
edges (line 11) is small in terms of complexity compared to line 6.

Algorithm 3 starts by computing the recursive sequence of
critical parents (line 1), which is O(|P| |E|). As this is only done
once, it has no influence on the total complexity. More important
is the iteration over the created list A (line 2) which has size O(|V|),
and hence contributes a factor O(|V|). In each of these iterations,
the tasks of A are scheduled onto P , with the respective scheduling
of their incoming edges (loop lines 3–6). The number of edges
scheduled here is in total O(|E|) and is always greater than or
equal to the number of tasks in A (remember that each task has as
least one incoming edge). For that reason, only the scheduling of
the edges is relevant for the complexity; everything else (lines 5
and 7–13) is negligible. The O(|E|) edges are scheduled on the
links. For each edge, the route has to be computed and the edge
is scheduled on each link of this route. This is characterised by
O(routing), which is the complexity for finding the communication
route in the network and its length. For many practically relevant
systems it is O(1), both in terms of finding the route and its length,
e.g. fully connected networks, one-port networks, central switch
networks [24]. As the origin task of the edge might be duplicated
O(|P|) times, scheduling a single edge might be repeated O(|P|)
times. Finally, the insertion technique is employed and there are
O(|E|) edges scheduled on each link, so it takes O(|E|) time to find
a slot for an edge on a link. In summary, scheduling all incoming
edges of the tasks in the ancestor list is O(|P| |E|2O(routing)). This
is repeated O(V) times (line 2); hence the procedure of Algorithm
3 is in total O(|P| |V| |E|2O(routing)).

As stated above, this procedure of Algorithm 3 is performed
|P| |V| times, resulting in a total complexity of O(|P|

2
|V|

2
|E|2O

(routing)) for the proposed algorithm. Be aware that this is the
worst-case complexity, which should be significantly higher than
Fig. 6. Target parallel system model of experiments: here, an example with four
processors.

the expected average case complexity in this case. For comparison,
the second part of a contention-aware list scheduling with the
insertion technique is O(|V|

2
+ |P| |E|2O(routing)) [24].

5. Experimental evaluation

This section is dedicated to the evaluation of the proposed
algorithm. Two questions need to be answered: (i) How do the
schedules improve compared to a task duplication algorithm
without contention awareness (Section 5.2.1)? (ii) How does
task duplication improve upon other contention-aware scheduling
algorithms (Section 5.2.2)? To answer these questions, we have
implemented four algorithms. The proposed contention-aware
task duplication algorithm (CA-D) is compared with a contention-
aware list scheduling (CA-LS) [25], which is essentially the same
algorithm as CA-D, but without the duplication of tasks. This
will give us insights about the benefit of task duplication under
the contention model. To evaluate the benefit of the contention
awareness, we implemented a task duplication (D) and a list
scheduling (LS) algorithm under the classic model. Again, they
are identical to CA-D and CA-LS, respectively, but without the
contention awareness.

As discussed in [26], the schedules produced under the different
models cannot be directly compared. Usually, schedules under the
contentionmodel are longer, butmore realistic, resulting in shorter
execution times. Hence, to compare the schedule, we simulated
contention for D and LS. This was done by rescheduling the D
and LS schedules under the contention model. In other words, the
tasks are assigned to the same processors in the same order, but
now the edges are scheduled in the topology graph to account for
contention effects. In [26], it has been shown that this is a valid and
realistic method to compare schedules produced under different
models. To indicate this contention simulation we named D and LS
in the following D-CS and LS-CS.

5.1. Set-up

For the models of the parallel target systems, we have chosen
sets of processors, namely 2, 8, 15, 25, and 50 processors,
connected to an ideal switch. Each processor has an out-going
and an in-coming link connected to this switch; thus only one
communication in each direction can take place at the same time.
Fig. 6 depicts a four-processor example for such a target system
model. This star network with a central switch corresponds to
processors with full-duplex communication ports, and this model
is also referred to as the one-port model [2]. The model employed
is realistic for modern parallel systems, and it allows concurrent
communications to take place between distinct processor pairs.
It is also a simple approximation when the network behaviour is
unknown or cannot be modelled. The main motivation in using
this model, however, is that if task duplication is relevant for
contention elimination in such a system, it will be even more
important with less ideal networks, where contention can happen
in more places.

To demonstrate this effect of more restricted networks, the
half-duplex variant of the network is used for comparison
(Section 5.2.3), in which each processor only possesses a half-
duplex communication link (Fig. 2). There, incoming and outgoing

O. Sinnen et al. / J. Parallel Distrib. Comput. 71 (2011) 77–86 83
Fig. 7. Speedup over processors for random graphs, SP graphs, out-trees and in-trees.
Fig. 8. Speedup over processors for fork and fork-join graphs (focus on 2–15 processors); left: D-CS and CA-D are identical.
communication must share the same link. It will be explicitly
stated in the following if this half-duplex variant is used;
otherwise, the standard network variant as described above is
employed.

A large set of graphs was generated as the workload for the
scheduling algorithms. This set comprised graphs of seven types:
in-trees, out-trees, series–parallel (SP), fork, join, fork-join and
random [24]. Within each type, graphs of different size were
created (number of nodes = 20, 100, 500, 1000) with random
node and edge weights, scaled to achieve different values of the
communication to computation ratio (CCR = 0.1, 1, 10) [24]. The
CCR is a measure of the importance of communication, and it is
defined as the total edge weight over the total node weight:

CCR =

∑
e∈E

c(e)∑
n∈V

w(n)
.

Each type of graph had parameters unique to it. In-trees and out-
trees were generated with a maximum branching factor of 3, and
were either balanced or unbalanced. SP graphs were generated
with spread values of 2, 3, 4, and 5. Random graphs had a density
of 0.5, 1, or 3. In total about 2000 graphs were generated and
scheduled.
5.2. Results

In this section, the significant experimental results are shown
anddiscussed. See Figs. 7 and 8,which display the speedup over the
number of processors for six different graph types. The displayed
values are average values across all different graphs of the same
type. Speedup of a schedule S is defined as the sequential length of
the graph over the schedule length, whereby the schedule length
is simply the sum of all node weights:

speedup(S) =

∑
n∈V

w(n)

sl(S)
. (14)

5.2.1. Contention-aware duplication (CA-D) versus non-contention-
aware duplication (D-CS)

The results show that contention-aware duplication (CA-D) is
never worse than non-contention-aware duplication (D-CS). In
fact, CA-D produces greater speedup than D-CS for all graphs,
except for fork graphs, where the speedup curves are the same.
The difference between the two algorithms is the greatest with SP
graphs, where the speedup produced by CA-D on 15 processors
is 120% greater than that of D-CS. With more processors, the
scaling is limited by the SP graph structure, in particular the

84 O. Sinnen et al. / J. Parallel Distrib. Comput. 71 (2011) 77–86
Fig. 9. Speedup over CCR for different graph types on 15 processors; left: standard network variant (full-duplex); right: half-duplex network variant.
low branching factor, for all processors. The speedup on 50
processors for out-trees is 24% greater than that of non-contention-
aware duplication, and for random graphs the improvement is
33%. Contention-aware duplication also produces greater speedup
for join and in-tree graphs. However, the difference is smaller
than with other graphs (as can be seen in Fig. 7 for in-trees)
because these graphs cannot benefit from duplication due to their
structure [24]; thus the improvement comes from the contention
awareness. Conversely, this also means that, due to contention
awareness, CA-D generally, i.e. for those graphs where duplication
is beneficial, duplicates more tasks than D-CS, which results in less
interprocessor communication and in turn less contention.

CA-D and D-CS produce the same curve for fork graphs
(Fig. 8). This is because both algorithms use the same duplication
technique. All nodes in a fork graph, except for the root node, have
the root node as their only parent. The root node is duplicated
on the processors by both algorithms, which means no remote
communication will take place in the schedule. Therefore, the two
algorithms actually produce the same schedule.

Fig. 9 shows on the left the average speedup across graph
types produced by each algorithm for different CCR values on
15 processors. The average speedup values produced by the al-
gorithms for high communication graphs (CCR = 10) show the
greatest difference between contention-aware duplication (CA-D)
and non-contention-aware duplication (D-CS). The speedup pro-
duced by CA-D is 95% greater than that of D-CS. The difference
is less, but still significant for medium communication graphs
(the speedup of contention-aware duplication is 20% greater). The
speedup produced for low communication graphs is similar among
the algorithms. As can be expected, contention-aware duplica-
tion can excel most when the CCR value is medium to high, in
other words, when avoiding communication and contention is
most important.

To summarise, duplication under the contention model is
significantly better than under the classic model. This comple-
ments earlier research [27] which shows that contention-aware
list scheduling is more efficient than non-contention-aware list
scheduling.

5.2.2. Contention-aware duplication (CA-D) versus contention-aware
list scheduling (CA-LS)

Task duplication has never been used in contention-aware
algorithms. In this subsection we therefore evaluate if it improves
the schedule length at least as much as it does under the classic
model, so we compare CA-D with CA-LS, both contention-aware
algorithms, but only CA-Ddoes duplication. As can be seen in Figs. 7
and 8, CA-D has greater speedup on all numbers of processors
for all graph types except for fork-join graphs. The greatest
difference between CA-D and CA-LS is with fork graphs, where the
speedup produced by CA-D is 192% greater on 15 processors, since
duplication removes the need for any remote communication to
occur. Graphs with structures that benefit from task duplication
(i.e., graphs where there is at least one node with more than one
child) show the greatest difference in speedup. Speedup produced
on 50 processors by CA-D is 90% greater than that of CA-LS for
out-trees, 32% greater for SP graphs, and 17% greater for random
graphs. Note that the difference between the non-contention-
aware algorithms D-CS and LS–CS is sometimes significantly less,
e.g. for random graphs. This is evidence supporting our hypothesis
that task duplication is more important for scheduling under the
contention model.

The speedup produced by CA-D for fork-join graphs is slightly
worse than that of CA-LS (Fig. 8). An analysis of the schedules
produced revealed that CA-D makes the incorrect decision of
duplicating the root node at the start of the algorithm, because it
does not foresee the significant amount of remote communication
that doing this will cause when the final join node is scheduled.
However, CA-D is notmuchworse in this situation and is still better
than non-contention-aware duplication (D-CS).

Regarding the CCR, the difference between CA-D and CA-LS on
15 processors (Fig. 8(left)) is greatest with graphs that have a high
level of communication, as can be expected. The difference lessens
as the communication level decreases.

To summarise, the duplication technique does significantly
improve the list scheduling heuristic under the contention model
for most task graphs. Using task duplication under the contention
model is of crucial advantage for graphs with medium to high
communication and even more beneficial than under the classic
model.

5.2.3. With more contention: half-duplex network variant
The effect of different networks on contention-aware schedul-

ing was already studied in [27]. In this subsection, the objective
is to demonstrate that contention elimination through task dupli-
cation becomes more relevant when the network is less ideal. To
achieve this, the half-duplex network variant (Section 5.1) is used
as the target system, leaving everything else, i.e. graphs and algo-
rithms, as before. Fig. 10 repeats the experiments of Fig. 7, with
the difference that the task graphs were scheduled on the half-
duplex network variant. As can be seen, the charts are very similar
to the ones in Fig. 7, with two very crucial differences. First, the ab-
solute speedup values are lower than before. This is expected, as
the network can sustain fewer communications at the same time,
and hence the produced schedules become longer. Second, and
most importantly, the difference between the contention-aware
duplication CA-D algorithm and all the other algorithms has sig-
nificantly increased. In other words, with CA-D the impact of the
weaker network on the schedule lengths is less pronounced than
with the other algorithms.

The same observations can be made more easily when looking
at Fig. 9(right), which shows the average speedup across graph
types produced by each algorithm for different CCR values on 15
processors. Again, the half-duplex variantwas the employed target
system.We identify the same changes as in Fig. 10: (i) the absolute

O. Sinnen et al. / J. Parallel Distrib. Comput. 71 (2011) 77–86 85
Fig. 10. Using the half-duplex network variant: speedup over processors for random graphs, SP-graphs, out-trees and in-trees.
speedup has dropped for all algorithms for CCR = 1 and CCR = 10;
(ii) the difference betweenCA-D and the other algorithms has quite
dramatically increased for the medium to high communication
cases (CCR = 1 and CCR = 10).

To summarise, CA-D performs in relative terms better when
the network is more restricted. This is the intended evidence for
our hypothesis that duplication is more important for less ideal
networks, as stated in Section 5.1.

6. Conclusions

This paper proposed a novel contention-aware task duplication
scheduling algorithm. Due to the lack of prior work, it was
investigated how task duplication can be performed under the
contention model, and corresponding methods were devised.
Based on this, an algorithm was proposed based on state-of-the-
art scheduling techniques found in task duplication algorithms and
other contention-aware algorithms.

An extensive experimental evaluation of the algorithmwas per-
formed, comparing the proposed algorithm with task duplication
under the classic model and with a contention-aware algorithm
without task duplication. This revealed very significant speedup
gains, both compared to task duplication under the classic model
and to other contention-aware scheduling algorithmswithout task
duplication. As expected, task duplication is even more benefi-
cial under the contention model than under the classic model,
and this effect increases for more restricted networks. The re-
sults strongly recommend task duplication as a standard technique
when scheduling task graphswithmedium to high communication
under the contention model.

References

[1] T.L. Adam, K.M. Chandy, J.R. Dickson, A comparison of list schedules for parallel
processing systems, Communications of the ACM 17 (1974) 685–689.

[2] O. Beaumont, V. Boudet, Y. Robert, A realistic model and an efficient heuristic
for scheduling with heterogeneous processors, in: HCW’2002, the 11th
Heterogeneous Computing Workshop, IEEE Computer Society Press, 2002.
[3] D. Bozdag, F. Ozguner, U.V. Catalyurek, Compaction of schedules and a two-
stage approach for duplication-based DAG scheduling, IEEE Transactions on
Parallel and Distributed Systems 20 (6) (2009) 857–871.

[4] D.E. Culler, R.M. Karp, D.A. Patterson, A. Sahay, E.E. Santos, K.E. Schauser,
R. Subramonian, T. von Eicken, LogP: a practicalmodel of parallel computation,
Communications of the ACM 39 (11) (1996) 78–85.

[5] D.E. Culler, J.P. Singh, Parallel Computer Architecture, Morgan Kaufmann
Publishers, 1999.

[6] S. Darbha, D.P. Agrawal, Optimal scheduling algorithm for distributed-
memory machines, IEEE Transactions on Parallel and Distributed Systems 9
(1) (1998) 87–95.

[7] A. Gerasoulis, T. Yang, A comparison of clustering heuristics for scheduling
DAGs on multiprocessors, Journal of Parallel and Distributed Computing 16
(4) (1992) 276–291.

[8] T. Hagras, J. Janec̆ek, A high performance, low complexity algorithm for
compile-time task scheduling in heterogeneous systems, Parallel Computing
31 (7) (2005) 653–670.

[9] J.J. Hwang, Y.C. Chow, F.D. Anger, C.Y. Lee, Scheduling precedence graphs
in systems with interprocessor communication times, SIAM Journal of
Computing 18 (2) (1989) 244–257.

[10] T. Kalinowski, I. Kort, D. Trystram, List scheduling of general task graphs under
LogP, Parallel Computing 26 (2000) 1109–1128.

[11] H. Kasahara, S. Narita, Practical multiprocessor scheduling algorithms for
efficient parallel processing, IEEE Transactions on Computers C-33 (1984)
1023–1029.

[12] Sang Cheol Kim, Sunggu Lee, J. Hahm, Push–pull: deterministic search-based
dag scheduling for heterogeneous cluster systems, IEEE Transactions on
Parallel and Distributed Systems 18 (11) (2007) 1489–1502.

[13] B. Kruatrachue, Static task scheduling and grain packing in parallel processing
systems, Ph.D. Thesis, Oregon State University, USA, 1987.

[14] B. Kruatrachue, T.G. Lewis, Grain size determination for parallel processing,
IEEE Software 5 (1) (1988) 23–32.

[15] J.-C. Liou, M.A. Palis, A new heuristic for scheduling parallel programs on
multiprocessor, in: 1998 International Conference on Parallel Architectures
and Compilation Techniques, October 1998, pp. 358–365.

[16] B.S. Macey, A.Y. Zomaya, A performance evaluation of CP list scheduling
heuristics for communication intensive task graphs, in: Parallel Processing
Symposium, 1998, Proc. of IPPS/SPDP 1998, 1998, pp. 538–541.

[17] L. Marchal, V. Rehn, Y. Robert, F. Vivien, Scheduling algorithms for
data redistribution and load-balancing on master–slave platforms, Parallel
Processing Letters 17 (1) (2007) 61–77.

[18] M.A. Palis, J.-C. Liou, D.S.L. Wei, Task clustering and scheduling for distributed
memory parallel architectures, IEEE Transactions on Parallel and Distributed
Systems 7 (1) (1996) 46–55.

[19] C.H. Papadimitriou, M. Yannakakis, Towards an architecture-independent
analysis of parallel algorithms, SIAM Journal of Computing 19 (2) (1990)
322–328.

86 O. Sinnen et al. / J. Parallel Distrib. Comput. 71 (2011) 77–86
[20] P. Rebreyend, F.E. Sandnes, G.M. Megson, Static multiprocessor task graph
scheduling in the genetic paradigm: a comparison of genotype representa-
tions, Research Report 98-25, Ecole Normale Superieure de Lyon, Laboratoire
de Informatique du Parallelisme, Lyon, France, 1998.

[21] F.E. Sandnes, G.M. Megson, An evolutionary approach to static taskgraph
scheduling with task duplication for minimised interprocessor traffic,
in: Proc. Int. Conf. on Parallel and Distributed Computing, Applications and
Technologies, PDCAT 2001, Tamkang University Press, Taipei, Taiwan, 2001,
pp. 101–108.

[22] V. Sarkar, Partitioning and Scheduling Parallel Programs for Execution on
Multiprocessors, MIT Press, 1989.

[23] G.C. Sih, E.A. Lee, A compile-time scheduling heuristic for interconnection-
constrained heterogeneous processor architectures, IEEE Transactions on
Parallel and Distributed Systems 4 (2) (1993) 175–186.

[24] O. Sinnen, Task Scheduling for Parallel Systems, Wiley, 2007.
[25] O. Sinnen, L. Sousa, List scheduling: extension for contention awareness and

evaluation of node priorities for heterogeneous cluster architectures, Parallel
Computing 30 (1) (2004) 81–101.

[26] O. Sinnen, L. Sousa, On task scheduling accuracy: evaluationmethodology and
results, The Journal of Supercomputing 27 (2) (2004) 177–194.

[27] O. Sinnen, L. Sousa, Communication contention in task scheduling, IEEE
Transactions on Parallel and Distributed Systems 16 (6) (2005) 503–515.

[28] O. Sinnen, L. Sousa, F.E. Sandnes, Toward a realistic task schedulingmodel, IEEE
Transactions on Parallel and Distributed Systems 17 (3) (2006) 263–275.

[29] A. Tam, C.L. Wang, Contention-aware communication schedule for high speed
communication, Cluster Computing 6 (4) (2003) 339–353.

[30] J.D. Ullman, NP-complete scheduling problems, Journal of Computer and
System Sciences 10 (1975) 384–393.

[31] M.Y. Wu, D.D. Gajski, Hypertool: a programming aid for message-passing
systems, IEEE Transactions on Parallel and Distributed Systems 1 (3) (1990)
330–343.

[32] T. Yang, A. Gerasoulis, PYRROS: static scheduling and code generation
for message passing multiprocessors, in: Proc. of 6th ACM International
Conference on Supercomputing, Washington DC, August 1992, pp. 428–437.
Oliver Sinnen received three degrees in electrical and
computer engineering: a diploma (equivalent to a mas-
ter’s) in 1997 from RWTH Aachen University, Germany,
and another master’s degree and a Ph.D. degree, in
2002 and 2003, respectively, both from Instituto Supe-
rior Técnico (IST), Technical University of Lisbon, Portugal.
Currently, he is working as a senior lecturer in the Depart-
ment of Electrical and Computer Engineering at the Uni-
versity of Auckland, New Zealand. In 2007 he authored the
book ‘‘Task Scheduling for Parallel Systems’’, published by
Wiley. His research interests include parallel computing,

scheduling, reconfigurable computing, graph theory, and algorithm design.

Andrea To received her Bachelor in Software Engineering
in 2007 from the University of Auckland, New Zealand.
Since then she has been working at Datacom Systems,
New Zealand, as a software developer, doing Identity and
Access Management work. Her main research interest is
task scheduling.

Manpreet Kaur received her Bachelor of Engineering
in Software from the University of Auckland, New
Zealand, in 2007. Since then she has been working
at Datacom Systems, New Zealand. She is currently
working as a software developer and application support
analyst on a Mobile Provisioning project for a large
telecommunications company. Her research interests are
task scheduling for parallel systems.

	Contention-aware scheduling with task duplication
	Introduction
	Task scheduling
	Classic scheduling
	Heuristics
	List scheduling

	Contention-aware scheduling

	Duplication in contention-aware scheduling
	Under the classic model
	Under the contention model

	Algorithm
	Experimental evaluation
	Set-up
	Results
	Contention-aware duplication (CA-D) versus non-contention-aware duplication (D-CS)
	Contention-aware duplication (CA-D) versus contention-aware list scheduling (CA-LS)
	With more contention: half-duplex network variant

	Conclusions
	References

