

Nimrod/K: Towards Massively Parallel Dynamic Grid Workflows

§ David Abramson, § Colin Enticott and † Ilkay Altinas

{david.abramson, colin.enticott}@infotech.monash.edu.au, altintas@sdsc.edu

§ Faculty of Information Technology,

Monash University,

Clayton, 3800, Victoria, Australia

† San Diego Supercomputer Center,

9500 Gilman Drive, MC 0505

La Jolla, CA 92093-0505, USA.

Abstract

A challenge for Grid computing is the difficulty in

developing software that is parallel, distributed and

highly dynamic. Whilst there have been many general

purpose mechanisms developed over the years, Grid

programming still remains a low level, error prone

task. Scientific workflow engines can double as

programming environments, and allow a user to

compose ‘virtual’ Grid applications from pre-existing

components. Whilst existing workflow engines can

specify arbitrary parallel programs, (where

components use message passing) they are typically

not effective with large and variable parallelism. Here

we discuss dynamic dataflow, originally developed for

parallel tagged dataflow architectures (TDAs), and

show that these can be used for implementing Grid

workflows. TDAs spawn parallel threads dynamically

without additional programming. We have added TDAs

to Kepler, and show that the system can orchestrate

workflows that have large amounts of variable

parallelism. We demonstrate the system using case

studies in chemistry and in cardiac modelling.

1 Introduction
Grid computing has been proposed as the next

generation of infrastructure to support distributed

applications in science, engineering and business

[13][14][20]. The Grid provides mechanisms that

harness computational resources, databases, high-speed

networks and scientific instruments, allowing users to

build innovative virtual applications. Such virtual

applications are synthesized by combining multiple

different components on multiple computational

resources.

A significant challenge for Grid computing is the

difficulty in developing software that is concurrent,

distributed and highly dynamic. There have been many

mechanisms developed over the years for building such

systems, ranging from remote procedure calls, general

IPC mechanisms like TCP/IP sockets, parallel

computing techniques based on message passing,

through to recent work in Web services. However,

programming still remains a low level and error prone

task.

Recently, a number of different groups have

developed scientific workflow engines that can double

as programming environments for the Grid. These Grid

Workflow systems [17][23][5][4][19][11][18][27]

[10][12] [24][31][32][33][34] allow a user to compose

a complex virtual application based on pre-existing, in

some case, legacy components. In this model,

components typically take input and produce output as

part of a pipeline. The workflow system schedules the

computations on the most appropriate (or selected)

resource only when the inputs are available. Likewise,

when the output is produced, it is forwarded to the next

computation in the pipeline. Grid Workflows have

been applied to diverse fields such as Computational

Chemistry [5], Ecology [4] and Bioinformatics [19].

However powerful, current workflow engines are

remarkably static – that is, the workflows themselves

do not typically change at run time. Importantly,

parallelism is typically specified statically when the

underlying workflow graph is generated. Because of

this, there are usually only two ways to specify parallel

activity in a workflow:

1. Build a graph with multiple independent sub-

graphs; or

2. Create a graph that contains logic to spawn parallel

activities.

The first of these means that the amount of

parallelism cannot change once the graph has started

execution, which is restrictive. Further, if there is a lot

of parallelism, the graph can become very large and

difficult to manage. For example, a workflow that

wishes to process the contents of a database, in

parallel, must be replicated many times to allow them

to run in parallel. The underlying graph can become

very large, but it also contains a high degree of

redundancy since the same operations are applied to

each database element. This is the approach taken with

tools like APST [8]. The second approach can support

dynamic parallelism, but requires the user to write a

very complex graph. For example, users must

explicitly code for parallel execution, and incorporate

loops that process the contents of the database, provide

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.
SC2008 November 2008, Austin, Texas, USA 978-1-4244-2835-9/08 $25.00 ©2008 IEEE

mechanisms that spawn independent calculations and

then synchronize the results. This process significantly

complicates the task of writing a workflow. In spite of

this, the approach is typical of systems like Kepler [17]

[23] and Taverna [19], for example.

Over the years we have developed expertise in

massively parallel parameter sweep workflows, using

the Nimrod family of tools [3]. Nimrod is a system that

makes it very easy to build parameter sweep and search

applications. Users can run an arbitrary executable

image, varying a number of parameters. Nimrod

contains tools that perform a complete parameter

sweep across all possible combinations (Nimrod/G), or

search using non-linear optimization algorithms

(Nimrod/O) [1] or experimental design techniques

(Nimrod/E) [25]. Importantly, the number of jobs, and

thus the parallelism, can be varied at run time, and the

Nimrod scheduler places tasks on the available

resources at run time.

However, Nimrod was not designed to execute

arbitrary workflows of the type discussed above. Thus,

it is difficult to run sweeps over workflows, and

workflows containing sweeps. Likewise, as illustrated,

most workflow systems do not support the parallel

execution of tasks that is supported in Nimrod, and are

not well suited to parameter sweeps and searches.

In this paper, we discuss an approach that allows

workflows to spawn parallel threads dynamically

without additional programming. Users write the

simplest possible workflow that captures their business

logic, and the underlying system provides mechanisms

to replicate it, at run time, as required. This approach

makes it possible to use the same workflow with one or

a million data values, regardless of the nature of the

logic. It allows a user to mix sweeps over workflows

and workflows that contain sweeps.

We have implemented a prototype tool called

Nimrod/K that demonstrates the new mechanisms.

Nimrod/K is built on Kepler’s runtime engine

(Ptolemy) [18]. It uses a dataflow execution model that

was originally developed for highly parallel dataflow

computers in the 1980’s, and this provides an

extremely rich execution mechanism. It leverages a

number of the techniques developed in the earlier

Nimrod tools for distributing tasks to the Grid.

The paper begins with a discussion of existing

workflow engines, and in particular, discusses Kepler

(as a typical one). We then discuss the tagged dataflow

architecture, independently proposed by groups at MIT

[6] and Manchester [16], and show how this provides

an ideal mechanism for executing dynamic workflows.

We then discuss our prototype implementation,

followed by a few case studies.

2 Grid Programming in Kepler

Kepler is typical of many modern Grid workflow

systems. It allows scientists from multiple domains to

design and execute scientific workflows. Scientific

workflows can be used to combine data integration,

analysis, and visualization steps into larger, automated

"scientific process pipelines" and "Grid workflows"

[23][5].

Kepler builds upon the Ptolemy II framework [18]

developed at the University of California, Berkeley.

Ptolemy II is a Java-based software framework with a

graphical user interface called Vergil. The Ptolemy II

project studies modeling, simulation, and design of

concurrent, real-time, embedded systems. The focus is

on assembly of concurrent components.

The focus of the Ptolemy II system is to build

models of systems based on the assembly of pre-

designed components. These components are called

actors:

“An actor is an encapsulation of parameterized actions

performed on input data to produce output data. An

actor may be state-less or state-full, depending on

whether it has internal state. Input and output data are

communicated through well-defined ports. Ports and

parameters are the interfaces of an actor. A port, unlike

methods in Object-Oriented designs, does not have to

have call-return semantics. The behaviors of a set of

actors are not well-defined without a coordination

model. A framework is an environment that actors

reside in, and defines the interaction among actors.”

[18].

The interaction styles of actors are captured by

Models of Computation (MoC). A MoC defines the

communication semantics among ports and the flow of

control and data among actors. “Directors” are

responsible for implementing particular MoCs, and

thus they define the “orchestration semantics” of the

workflow. Simply by changing the director of a

workflow, one can change the scheduling and overall

execution semantics of a workflow, without changing

any of the components or the network topology of the

workflow graph. Two directors that are commonly

used for Grid programming are the Process Networks

(PN) and the Synchronous Data Flow (SDF) directors,

which are based on Kahn Process Networks.

A Process Network is a directed graph, comprising

a set of nodes (processes) connected by a set of

directed arcs (representing FIFO queues). Each process

executes as a standalone sequential program and is

wrapped as a Ptolemy II actor. The one-way FIFO

channels are used for the communication of processes

and each channel can carry a possibly infinite sequence

(a stream) of atomic data objects (tokens). Since

channels have, in principle, unbounded capacity, writes

to channels are non-blocking, while reads are blocking

[18]. The SDF domain is a dataflow-based execution

model in which a sequential execution order of actors

can be statically determined prior to execution. This

results in execution with minimal overhead, as well as

bounded memory usage and a guarantee that deadlock

will never occur.

Kepler extends PtolemyII with a significant number

of actors aimed particularly at scientific applications,

e.g., for remote data and metadata access, data

transformations, data analysis, interfacing with legacy

applications, web service invocation and deployment,

provenance tracking, etc. Kepler also inherits from

Ptolemy the actor-oriented modeling paradigm.

In spite of its significant power, Kepler, and many

other current workflow systems, do not support

dynamic parallel execution. Thus, as discussed in the

introduction, users must explicitly code a workflow to

cause it to execute elements in parallel – either by

replicating the workflow statically, or adding looping

constructs that scatter and gather threads. Both of these

techniques significantly complicate the workflow and

obscure the underlying business logic. In the next

section we discuss a tagged dataflow architecture, and

show that it provides a much richer execution

environment for parallel workflows.

3 The Tagged Dataflow Architecture

Arvind and Nikhil, at MIT, and separately Gurd and

Watson at Manchester, proposed a multiprocessing

architecture that supports parallel execution of

instruction streams. Both of these architectures execute

programs as “graphs” that represent a machine

instruction sequence for a given program. The

underlying model assumes that an instruction can ‘fire’

when it has its operands, unlike the conventional Von-

Neumann model in which an instruction fires when

selected by the program counter. In a dataflow

machine, multiple instructions can fire concurrently,

and provided they are scheduled to different processing

elements, the program can be executed in parallel. A

number of dataflow machines were produced,

however, the additional hardware complexity made

them uncompetitive with Von Neumann machines of

the time.

Figure 1 illustrates the basic principles of a

dataflow machine. Here, the node of graph represents

an arbitrary instruction, and tokens contain the value of

each operand. Instructions, or nodes, consume and

generate tokens. In step (a) a token arrives on one input

of an instruction. In step (b) a token arrives on the

other input. In step (c) the instruction fires, consuming

the tokens on the inputs, and generating token on the

output. When connected together, these instructions

can be used to implement arbitrary complex programs.

Figure 1 – instruction sequencing in a dataflow

machine

In tagged token machines, tokens contain both a

data field and a special tag field – or “colour”, which is

used to separate threads of execution. Importantly, an

instruction fires when it has a token on each of its

inputs that have the same colour values. Parallelism is

implemented simply by creating tokens with different

colours. Figure 2 shows an example. Here three tokens

are stored on the left input of the instruction, each with

a different colour. When tokens of the same colour

arrive on the other input, the node fires. However,

because each token has a different colour, three

instances of the node execute in parallel. The output

tokens are coloured the same as the inputs, and thus, as

long as the colours remain distinct, the graph executes

in parallel. It is worth noting that the machines include

a number of colour manipulation instructions, and this

makes it possible to both change the amount of

parallelism dynamically, but also to change it in

different parts of the graph. For example, it is not

uncommon to spawn a number of concurrent threads

for, say, parallel loops, and then collect the outputs

back into a sequential instruction steam.

Figure 2 – instruction sequencing in a tagged dataflow

machine

It is not possible to give a full description and all of

the complexities of the instruction sets of the

Manchester and MIT machines here. What is important

is the idea of distinguishing concurrent threads of

execution by colouring the tokens that flow through the

graph. The architecture used in this work builds on a

generalisation of the tagged architecture, and was

proposed by Abramson and Egan [2]. This

generalisation allows tokens with the same colour to

form a queue, and thus the model allows both queued

(sequential) and tagged (parallel) execution.

As it turned out these techniques were not

particularly successful for scheduling individual

instructions at the machine code level, because the

hardware and software overheads are substantially

more than the cost of executing a single instruction.

Thus, dataflow machines never achieved acceptance as

a viable parallel architecture. However, the tagged

dataflow idea can be used to support the type of

dynamic parallelism discussed in this paper where the

computations are much more significant than

individual instructions, and thus the overhead is

minimal. In the next section we will describe how we

have used these ideas in the Nimrod/K tool set.

4 Design of Nimrod/K

In Section 2 we introduced the way Kepler (and the

underlying Ptolemy) supports the use of different

execution models with the same workflow. One of the

reasons we have based our implementation on Kepler

is that this important separation of concerns makes it

possible to introduce a new execution mechanism

based on the tagged dataflow execution model whilst

leveraging the existing infrastructure. Accordingly, we

have implemented a new Director called the Tagged

Dataflow Architecture (TDA). The TDA builds on the

existing SDF and PN directors but tags (or colours)

tokens to distinguish different threads of execution. We

envisage the idea could be added to other workflow

engines with an ability to add new execution

mechanisms. The TDA director supports existing

‘legacy’ actors in the PtolemyII project and the newer

actors developed for Kepler, making a diverse range of

actors available.

In the TDA, threads are identified by adding a

unique tag to each token. These tag values are

manipulated by a set of special tag manipulation actors,

although the tag flow implementation is usually hidden

from workflow designers. Even though some of

Ptolemy II data types can be large complex structures,

the implementation minimises memory usage by using

pointers to the structure containing each token in the

thread. This means the implementation scales well as

the number of threads increases.

Underlying the SDF and PN directors are FIFO

queues located on each of the inputs on an actor.

Normally, when multiple tokens arrive on an input

port, they are queued and can be processed when the

actor is available. The TDA director follows the same

procedure, but with a separate queue for tokens with

different tags. This means that multiple tokens with

the same tag value queue up, whereas tokens with

different tag values can be consumed in parallel.

Multiple actors cannot read from the same queue

because they only read from queues with the same tag

value assigned to them, and no two actors are given the

same tag value. This gives the ability to copy actors

(PtolemyII calls this cloning) and invoke them using

different tags simultaneously. Importantly, this

approach requires no changes to existing actors, which

are usually unaware that they have been cloned.

We offer three methods to assign and modify tags

within a workflow. The first two are aimed at the

workflow creator who wishes to parallelize execution

of a workflow. The third is aimed at the actor

developer who wishes to develop new actors that

support parallel threads.

The first method is transparent to workflow

designers, and involves a number of new actors that

generate and consume tagged tokens. For example, the

Parameter Sweep actor shown in Figure 3 generates

tokens that are already tagged. One could imagine a

small set of such actors, such as reduction operators,

etc. Clearly, this method is preferred because the

parallelism is implicit in the workflow specification,

and no explicit tag manipulation is required. Thus, this

method makes it possible to take existing workflows

and parallelise them without modification to the core

logic. The second method provides a special tagging

actor that adds a tag to a given token. This actor has

two inputs, one of which takes a tag and the other takes

an arbitrary token. The output of the actor is a token

with its tag set.

The third method, which is directed at actor

developers, provides an API that allows tagging,

retagging or removing the tag of a token. This means

that a developer can write complex actors that abstract

tag management from the workflow creator, but still

expose sophisticated thread management techniques.

Likewise, we have provided two methods to access the

values assigned to the tag from both the workflow

design and from within an actor’s code. First, when an

actor is invoked, the tag value of its input tokens is

added to the actor’s parameter scope making it

available in the actor’s parameter options for a

workflow creator to use. Second, we provide API

functions so that actor developers can also access this

information.

Figure 3 – a simple Kepler workflow

Figure 3, shows a simple parameter sweep

experiment executing over an application called “My

program”. In this example, the parameter sweep actor

produces a number of tokens, each containing one of

the parameter combinations (stored in a record). When

using the TDA director, these tokens are also tagged

with the value of the record. For example, if the value

of the record is “X=1, Y=1”, then the value of the tag

is “X=1, Y=1”. The “My program” actor accepts one

token and produces one token as output, whilst the

Display actor displays any tokens it receives. We will

now compare the different behaviour of the SDF, PN

and TDA directors as they orchestrate this simple

workflow.

The SDF director [22] is a fully synchronised and

pre-scheduling MoC. It executes its actors in turn until

every actor reports it is unable to execute. The PN

director, on the other hand, [22] activates every actor

simultaneously and blocks an actor when there are no

tokens available. Therefore, when executing the

workflow in Figure 3 under the PN director, all actors

are activated simultaneously and the “My program”

and the Display actors are blocked immediately. As

the parameter sweep actor produces tokens, the “My

program” actor proceeds to process the tokens one at a

time. Likewise the Display actor displays the tokens as

they arrive. As it turns out, both the SDF and the PN

directors behave in similar ways for this simple

workflow.

Figure 4 – The TDA director executing the simple

workflow

Whilst the TDA director uses the same requesting

technique as SDF, it also has the ability to create new

threads for each of the tokens that it generates. In this

example, the TDA director creates a single thread for

the parameter sweep actor, which sequentially sends

tokens to the “My program” actor. However, since

each output token from the parameter sweep actor is

tagged with a different value, multiple copies of “My

program” execute in parallel. Importantly, the output

of the “My Program” actor is tagged with the same

value as its input, and thus, each “My program” thread

communicates with a different Display actor thread.

The effect of this is that the TDA director creates a

separate thread for each of the parameter combinations

and, as shown in Figure 4, they each display in parallel.

It is important to highlight that Figure 4 depicts the

run-time behaviour of the workflow, whereas, Figure 3

shows the workflow as designed.

A more complex workflow would probably gather

or reduce the outputs of “My Program” together into a

single thread, possibly reordering them into a single

queue based on their tag values. This is analogous to a

scatter-gather operation in a vector processor or a

parallel loop instruction in a programming

environment, and achieves the same sort of parallel

execution.

Comparing directors shows the concurrency benefit

of using the TDA director and how actors remain

unmodified in all environments. Many of the Grid

actors in Kepler do not provide information on the

consumption and firing rate of tokens. In the example

given in Figure 3, it may not be clear how many tokens

the “My program” actor needs to consume nor how

many tokens it will eject for each firing and if these

numbers remain consistent. As discussed in [22], the

SDF director determines a schedule for a workflow at

the start of the execution. Because of this, it is unable

to handle non-deterministic actors that change their

token usage behaviour during the execution while the

PN director adapts to the changing state. In this sense,

the TDA director is similar to the PN as its schedule is

not fixed.

State fullness is another attribute of an actor that

needs to be considered. State fullness is where an actor

holds information from a previous firing making the

order of tokens entering the actor important. This can

also happen indirectly through shared resources. These

types of actors are safe using the SDF and PN directors

as there is only one copy of the actor on the workflow.

These actors are supported with the TDA director, but

may be of limited value as they may not be able to be

cloned because of concurrency issues, and thus, should

be used with caution. The TDA environment allows

both the actor developers and the workflow designers

to specify if and when an actor can be cloned. Issues

relating to state and parallelism will be discussed in

further work.

5 Implementation Details

Figure 5 shows the structure of our prototype director

implementation. There are three main components: the

token scheduler, the actor manager and the director.

The token scheduler’s role is to decide which tag an

actor should process next. The actor manager is

responsible for the execution of an actor, and for

maintaining all of its copies. Like all directors in

PtolemyII and Kepler, the TDA director maintains the

execution of the workflow and reports to the

workflow’s calling function.

The token scheduler is responsible for deciding the

actor firing order and the assignment of tokens to actor

clones. The scheduler is notified of all token,

movements and is responsible for deciding the number

of actor copies that should be cloned at any time. This

dynamic scheduling is different from the static

scheduler used by the SDF director and the blocking

method used in the PN director. We have also added a

actor base class with an API that allows the scheduler

to query the actor’s resource requirements. A scheduler

needs to consider resource availability to improve its

scheduling even when using local resources. For

example, a workflow may run a CPU intensive

simulation package such as MATLAB which might be

executed on a multi-processor. In this scenario, it is

important for the scheduler to know how many

MATLAB computations it can execute concurrently.

Further to this, MATLAB might appear more than

once in the workflow which needs consideration when

scheduling these computations concurrently. It is the

scheduler’s responsibility to coordinate shared

resources across the workflow.

Figure 5 - Object associations

The prototype token scheduler is based on a simple

outstanding request queue where an entry is added

when a token arrives on any actors’ input ports. The

entry holds a reference to the actor and a reference to

the token’s tag’s value, and ensures that all outstanding

requests are processed before terminating the

workflow. Storing references to these objects does not

create inconsistency issues because actors are never

changed during execution and tags are immutable in

this environment. Only one outstanding request is kept

per actor and tag combination to avoid unneeded

multiple requests that will increase the queue size.

This has the most noticeable effect when an actor

requires more than one token to fire, but will only need

a single firing request. Storing requests this way

reduces the memory requirement of the queue because

the actor only needs to be flagged once to execute.

When an actor finishes firing and reports that it can fire

again, the token scheduler decides whether to requeue

this actor and tag combination by checking if there are

any outstanding tokens. The only exception are actors

that are defined as “source” actors which always

generate a new request after a successful fire until the

actor reports it is no longer able to fire. Our prototype

token scheduler currently clones as many actors as

required to consume all outstanding tokens at that time.

However, this strategy may generate a large demand on

resources including memory, in both the number actors

and the number of active tokens, and on shared

resources. Similar issues have been addressed in the

past with the k-bounded loops work of Culler [9] and

we plan to integrate some of these ideas in the near

future.

Actor managers are responsible for maintaining the

actors on the workflow. There is one actor manager

for each actor on the workflow. They provide all the

functions required to maintain an actor, including

functions that manage actor cloning, token inputs and

outputs, initialisation and cleaning up. Importantly,

actors do not require modification to work under the

TDA director because the actor manager performs all

the functions required. These functions include the

interface for a scheduler to query an actor’s resource

needs. The actor manager adds the tag’s content

(assigned by the token scheduler) to the actor’s

parameter scope and it ensures outgoing tokens have

the correct tag for the actors that do not manage the tag

itself.

The TDA director is invoked in the same way

SDF and PN directors. Importantly, it is built on the

same director interface as SDF and PN, and this allows

it to interact seamlessly with the Ptolemy environment.

It also has the functions to maintain synchronisation

betweens the threads in its environment.

An important design feature of Kepler (and

Ptolemy) is the use of multiple directors on the same

workflow by using a hierarchical layout. This is

implemented using special “Composite Actors” that

supports nesting of directors. Just as PN directors

allow an SDF controlled sub-graph actor in its

workflow, a TDA controlled sub-graph can also be part

of a PN controlled workflow. Further to this, it is

possible to have an SDF sub-graph inside a TDA

TDA Director

Nimrod Actor Manager
Nimrod Actor Manager

Actor Manager

Token
Scheduler

Original
Actor

Actor
Copies

Token
Queues

workflow. There are rules governing which directors

can be nested as a sub-graph on a workflow, which are

explained in [15]. The TDA director closely resembles

PN director on which combinations are possible with

one exception, it is possible to have TDA controlled

sub-graph as part of an SDF controlled workflow. This

is because the TDA director does not block on reads

and can release control back to the SDF director when

no internal actor is active. To complicate the issue,

placing a PN director inside a TDA controlled

workflow blocks the TDA director from releasing

control back to an outlying SDF controlled workflow.

This is because PN directors do not relinquishing

execution until it is told there are no more tokens at

which point it terminates completely. We are currently

exploring the semantics of nesting TDA with other

directors and will produce a set of templates with

clearly defined semantics for workflow developers.

6 Case Studies

In this section we demonstrate the effectiveness of our

work using two case studies in theoretical chemistry

and cardiac cell modelling. We have deliberately

chosen fairly simple workflows as demonstrators in

this paper to avoid complicating the description of the

problem domains and the workflows. However, the

same techniques have been applied to more complex

examples in quantum chemistry, and will be reported

in the future.

6.1 Case study 1 – Quantum Chemical

Calculations

The first experiment concerns quantum chemical

models – based on the Schrödinger equation – of

assemblies of atoms as found in large biomolecules.

To date, it has been impossible to use quantum

methods on such large molecules because the

computational time becomes prohibitive.

This work involves a set of approximations that

replace large multi-atom systems with a single

“pseudo” atom that has special theoretical properties

that make it an analogue for the larger system. The

solution involves computing a potential surface for the

pseudo atom, called a pseudo-potential, and using this

in the quantum calculations. A pseudo-potential does

not describe a real chemical system, but can be used to

approximate, and replace, a much larger molecular

system. The result is that the quantum chemical

calculations are much simpler, and faster, than if the

original molecule had been used, opening the

possibility of using quantum methods on very large

systems. The details can be found in [28][29][30]. In

our previous work we used Nimrod/G to schedule and

execute the calculations.

The workflow shown in Figure 6 depicts the

computation, which involves the execution of the

GAMESS quantum chemistry package [26][21] a

number of times, across a search space defined by 4

parameters (A, B, C and D). Here parameters A, B, C

and D are to be determined that will provide the best fit

between the real atomic system and target properties of

the pseudo atom. The experiment used the results of

the very large sweep over the A, B, C, D parameter

space.

Figure 6 – GAMESS Workflow

The workflow shows 4 separate executions of

GAMESS for each parameter set. The Parameter

Sweep actor computes all combinations of the A, B, C

and D, and builds a record for each of these

combinations. They are used as inputs to the GAMESS

actors, and the outputs are sent into an actor that

computes the Root Mean Square error of the cost

function. This is a measure of how well a particular

pseudo potential surface fits calculations of a real

molecule. The results are re-ordered and plotted using

a Graph actor. Figure 7 shows the results across two of

the parameters. The remaining parameter can be varied

to produce multiple images, which can then be

composed into a movie.

In the experiment we executed the workflow with

three different Directors – SDF, PN and TDA. We

highlight the simplicity of changing the execution

semantics – all we had to do to change them was to

swap out one director on the Vergil canvass and

replace it with another one. Figure 8 shows the

performance of the workflow under each of the

Directors running on the testbed shown in Table 1. All

compute resources have little communication latency

(<1ms) and the data sets were very small and such had

a negligible affect on the experiment time. The SDF

director only executed one job at a time, as expected,

and took a total of 15:34:20. The PN director was able

to exploit the static parallelism in the workflow, and

executed up to 4 jobs at a time, taking 05:18:38. The

TDA director was able to execute as many jobs

together as there were processors available, and took a

total of 00:29:19. Thus, the PN ran approximately 3

times faster than the SDF, and the TDA ran nearly 32

times faster than the SDF. The reason the PN times are

not exactly 4 times faster is because the director waits

on all 4 GAMESS-Nimrods to finish before submitting

the next 4, and since each of them takes a different

amount of time, time is lost in synchronising them. The

graph in Figure 8 shows the number of jobs running at

any time, and shows that the TDA Director peaks at 45

jobs. An initial observation is that the experiment used

less than the maximum number of available processors

(274) even though there were in principle sufficient

jobs (484) to saturate the machines. This is because the

jobs ran for only a few minutes allowing them to finish

before all jobs were scheduled. Thus, the peak number

of processors was only 45, and the average speedup

only 32. We plan to optimize the job startup overheads

in future implementations, and this will improve the

speedup for experiments that have short running jobs.

Figure 7 – Output of the GAMESS experiment

Figure 8 – performance results.

Machine #

Procs

Hardware Operating

System

160 Intel(R) Xeon(R)

E5310 @ 1.60GHz

East

64 Intel(R) Xeon(R)

5160 @ 3.00GHz

CentOS

release 5

Mahar 50 Intel(R) Pentium(R)

4 CPU 3.00GHz

Debian

GNU/Linux

3.1

Table 1 – Testbed constitution

6.2 Case study 2 – Cardiac cell

simulation

The second case study concerns a MATLAB model of

a rabbit heart. This simulation solves a set of coupled

ordinary differential equation that describe the various

ion flows in a single cardiac cell. As in the previous

case study, we wish to explore the behaviour of the

model by varying a number of parameters, and then

compare the ion levels (in particular the Ca
2+

concentrations) with the results of real physiological

experiment. [25]. An objective cost function, which

indicates the solution quality for different parameters,

is computed as moduli of the differences between

computed metabolic-experimental values.

This case study highlights the TDA director’s

feature of accessing the tag’s value and how it can be

used to simplify workflows. We use the MATLAB

actor packaged in the Kepler project to invoke

MATLAB. Figure 9 shows the experiment workflow

as set up for our new TDA director. The parameter

sweep passes parameter values, as tokens with

different tags, to the MATLAB actor. When executed

under TDA, this causes multiple instances of the

MATLAB actor to be cloned at run time. The TDA

director adds the values of the parameters into the

actor’s “Parameter Scope” which is then substituted

into the MATLAB script. However, with the SDF and

PN directors, each parameter has to be passed into a

parameter port, as shown in Figure 10, which is

implemented with a CompositeActor. This

CompositeActor only contains the MATLAB actor,

which now has the parameters in scope, and an internal

SDF director. This new way of adding parameters to

actors using tag tokens makes the construction of

workflows simpler. These methods of passing the

parameters to the actor differ from the GAMESS case

study which used Nimrod to pass the parameters into

the script.

Figure 9 – MATLAB workflow with the TDA

director

Figure 10 – MATLAB workflow with an SDF or

PN director

This experiment was performed on a server that has

two Intel(R) Xeon(R) E5310 @ 1.60GHz Quadcore

processors allowing 8 processes to run

simultaneuously. Using the SDF and PN directors, as

expected, all the MATLAB jobs ran sequentially for

1:43:26 and 1:44:27 respectively. With the TDA

director, all 64 MATLABs ran concurrently finishing

the experiment in 16:54, delivering a speedup of 6.1.

The value of the objective cost function is graphed

against two of the parameters in Figure 11.

Interestingly, this graph was produced using a standard

Kepler actor for MATLAB, demonstrating the

significant functionality available in an existing

workflow system.

Figure 11 – Output of the MATLAB experiment

7 Conclusions

In this paper we have discussed the design and

implementation of a new orchestration mechanism for

scientific workflows. The scheme is based on

mechanisms that were originally designed for parallel

dataflow computers. When used in this mode, they

allow a workflow to dynamically spawn threads of

computation transparently from the workflow design,

and this greatly simplifies the work for the user over

existing workflow systems.

We have built a prototype version in Kepler, and

have been able to reuse all of the existing Kepler code

by simply adding a new director. This is very attractive

because it now only allows us to reuse an existing

workflow system, but also all of the components

(actors) that have been developed to date.

We have illustrated the effectiveness of the scheme

using two examples, both of which had been

implemented using our Nimrod software previously.

The new system is significantly more flexible and

allows workflows of arbitrary complexity to be

implemented.

The current system is only a prototype, and has

illustrated the functionality and potential for our

approach. However, systems like Kepler, allow

components to pass more complex data types like files.

File transport between Grid nodes adds a level of

complexity and we will explore this in the near future.

Further, the scheduling system in the current prototype

does not have the sophistication of some of the other

techniques we have implemented in Nimrod. We plan

to explore more complex scheduling approaches, such

as those discussed in [7].

Acknowledgements

This project is supported by the Australian Research

Council. Thanks go to Wibke Sudholt from the

University of Zurich for the GAMESS experiment

discussed in first case study, and Saleh Amirriazi and

Anuska Michailova, from the University of California

at San Diego, for the second case study.

References

[1] Abramson D, Lewis A, Peachey T, Fletcher, C.,

“An Automatic Design Optimization Tool and its

Application to Computational Fluid Dynamics”,

SuperComputing 2001, Denver, Nov 2001

[2] Abramson, D and Egan, G, "The RMIT Dataflow

Computer: A Hybrid Architecture", The Computer

Journal, Vol 33, No 3, June 1990, pp 230 - 240.

[3] Abramson, D., Giddy J., and Kotler, L. “High

Performance Parametric Modeling with Nimrod/G:

Killer Application for the Global Grid,” In Int’l.

Parallel and Distributed Processing Symposium

(IPDPS), Cancun, Mexico, May 2000.

http://www.csse.monash.edu.au/~davida/nimrod/.

[4] Altintas, I. Berkley, C. Jaeger, E. Jones, M.

Ludäscher B. and Mock, S. “Kepler: Towards a

Grid-Enabled System for Scientific Workflows,” in

the Workflow in Grid Systems Workshop in GGF10

- The 10th Global Grid Forum, Berlin, March 2004.

[5] Altintas, I., Birnbaum, A., Baldridge, K., Sudholt,

W., Miller, M., Amoreira, C., Potier Y. and

Ludaescher, B. “A Framework for the Design and

Reuse of Grid Workflows” Intl. Workshop on

Scientific Applications on Grid Computing

(SAG'04), LNCS 3458, Springer, 2005.

[6] Arvind, and Nikhil R.S. “Executing a Program on

the MIT Tagged-Token Dataflow Architecture”,

IEEE Transactions on Computers, Vol. 39, No. 3

(1990)

[7] Ayyub, S. and Abramson, D. “GridRod - A Service

Oriented Dynamic Runtime Scheduler for Grid

Workflows”. 21
st
 ACM International Conference

on Supercomputing, June 16-20, 2007, Seattle.

[8] Casanova H. and Berman, F. “Parameter Sweeps on

The Grid With APST”, chapter 26. Wiley

Publisher, Inc., 2002. F. Berman, G. Fox, and T.

Hey, editors.

[9] Culler. D. “Managing Parallelism and Resources in

Scientific Dataflow Programs”, PhD thesis,

Department of Electrical Engineering and

Computer Science,Massachusetts Institute of

Technology, March 1990.

[10] Deelman, E. Blythe, J. Gil, Y. Kesselman, C.

Mehta, G. Vahi. K. “Mapping Abstract Complex

Workflows onto Grid Environments”, Journal of

Grid Computing, 1:25-39, Kluwer Academic

Publishers, Netherlands, 2003.

[11] e-Science Grid Environments Workshop, e-Science

Institute, Edinburgh, Scotland, May 2004,

http://www.nesc.ac.uk/esi/events/.

[12] Fahringer, T. Jugravu, A. Pllana, S. Prodan, R. Jr,

C. S. and Truong H. L., ”ASKALON: a tool set for

cluster and Grid computing”, Concurrency and

Computation: Practice and Experience, 17:143-169,

Wiley InterScience, 2005.

[13] Foster I. and Kesselman, C. “Globus: A

Metacomputing Infrastructure Toolkit,” Int’l J. of

Supercomputer Applications, vol. 11, no. 2, 1997,

pp. 115-128.

[14] Foster I. and Kesselman, C. (editors), The Grid:

Blueprint for a New Computing Infrastructure,

Morgan Kaufmann Publishers, USA, 1999.

[15] Goderis, A., Brooks, C., Altintas, I., Lee, E., Goble.

C. “Composing Different Models of Computation

in Kepler and Ptolemy II”. 2007 Proceedings,

International Conference on Computational Science

(ICCS), April, 2007.

[16] Gurd J.R. and Watson I. “Data Driven System for

High Speed Parallel Computing (1 & 2) Computer

Design, vol.9 nos.6 & 7, June & July 1980, pp. 91-

100 & 97-106.

[17] http://kepler-project.org

[18] http://ptolemy.eecs.berkeley.edu/ptolemyII/ptIIfaq.

htm

[19] http://taverna.sourceforge.net

[20] http://www-unix.globus.org/toolkit/

[21] http://www.msg.ameslab.gov/GAMESS/

[22] Lee, E. et al, "Overview of the Ptolemy Project,"

Technical Memorandum UCB/ERL M01/11,

University of California, Berkeley, March 6, 2001.

[23] Ludäscher, B., Altintas, I., Berkley, C., Higgins, D.,

Jaeger-Frank, E., Jones, M., Lee, E., Tao J. and

Zhao, Y. “Scientific Workflow Management and

the Kepler System”, Concurrency and

Computation: Practice & Experience, Special

Issue on Scientific Workflows, 2005.

[24] Oinn, T. Addis, M. Ferris, J. Marvin, D. Senger, M.

Greenwood, M. Carver T. and Glover, K. Pocock,

M.R. Wipat, A. and Li. P. “Taverna: a tool for the

composition and enactment of bioinformatics

workflows”, Bioinformatics, 20(17):3045-3054,

Oxford University Press, London, UK, 2004.

[25] Peachey, T. C., Diamond, N. T., Abramson, D. A.

Sudholt, W., Michailova, A. Amirriazi, S.,

“Fractional Factorial Design for Parameter Sweep

Experiments using Nimrod/E”, to appear, Journal

of Scientific Programming.

[26] Schmidt, M. W., Baldridge, K. K., Boatz, J. A.,

Elbert, S. T., Gordon, M. S., Jensen, J. H., Koseki,

S., Matsunaga, N., Nguyen, K., Su, S., Windus,

T.L, Dupuis, M. and Montgomery, J. A. General

atomic and molecular electronic structure system,

J. Comput. Chem., v. 14, 1993, pp. 1347-1363;

[27] Scientific Data Management Framework

Workshop, Argonne National Labs, August 2003.

http://sdm.lbl.gov/~arie/sdm/SDM.Framework.wsh

p.htm

[28] Sudholt, W., Baldridge, K. K., Abramson, D.,

Enticott C. and Garic, S. Applying Grid Computing

to the Parameter Sweep of a Group Difference

Pseudopotential, in Computational Science – ICCS

2004: 4th International Conference, Kraków,

Poland, June 6-9, 2004, Lecture Notes in Computer

Science, v. 3036, 2004, pp. 148-155.

[29] Sudholt, W., Baldridge, K. K., Abramson, D.,

Enticott C. and Garic, S. Parameter Scan of an

Effective Group Difference Pseudopotential Using

Grid Computing, New Generation Computing, v.

22, 2004, pp. 125-136.

[30] Sudholt, W., Baldridge, K., Abramson, D., Enticott

C. and Garic, S. Application of grid computing to

parameter sweeps and optimizations in molecular

modeling, Future Generation Computer Systems, v.

21, 2005, pp. 27-35.

[31] Tannenbaum, T. Wright, D. Miller, K. and Livny.

M. “Condor - A Distributed Job Scheduler.”

Beowulf Cluster Computing with Linux, The MIT

Press, MA, USA, 2002.

[32] Taylor, I. Shields, M. and Wang. I. “Resource

Management of Triana P2P Services”, Grid

Resource Management, Kluwer, Netherlands, June

2003.

[33] von Laszewski, G. Amin, K. Hategan, M. Zaluzec,

N. J. Hampton, S. and Rossi. A. “GridAnt: A

Client-Controllable Grid Workflow System”, In

37th Annual Hawaii International Conference on

System Sciences (HICSS'04), Big Island, Hawaii:

IEEE CS Press, Los Alamitos, CA, USA, January

5-8, 2004.

[34] Yu J., and Buyya, R., A Taxonomy of Workflow

Management Systems for Grid Computing”,

Journal of Grid Computing, Springer Press, New

York, USA.

