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Abstract 
 

A challenge for Grid computing is the difficulty in 

developing software that is parallel, distributed and 

highly dynamic. Whilst there have been many general 

purpose mechanisms developed over the years, Grid 

programming still remains a low level, error prone 

task. Scientific workflow engines can double as 

programming environments, and allow a user to 

compose ‘virtual’ Grid applications from pre-existing 

components. Whilst existing workflow engines can 

specify arbitrary parallel programs, (where 

components use message passing) they are typically 

not effective with large and variable parallelism. Here 

we discuss dynamic dataflow, originally developed for 

parallel tagged dataflow architectures (TDAs), and 

show that these can be used for implementing Grid 

workflows. TDAs spawn parallel threads dynamically 

without additional programming. We have added TDAs 

to Kepler, and show that the system can orchestrate 

workflows that have large amounts of variable 

parallelism. We demonstrate the system using case 

studies in chemistry and in cardiac modelling. 

 

1 Introduction 
Grid computing has been proposed as the next 

generation of infrastructure to support distributed 

applications in science, engineering and business 

[13][14][20]. The Grid provides mechanisms that 

harness computational resources, databases, high-speed 

networks and scientific instruments, allowing users to 

build innovative virtual applications. Such virtual 

applications are synthesized by combining multiple 

different components on multiple computational 

resources.  

A significant challenge for Grid computing is the 

difficulty in developing software that is concurrent, 

distributed and highly dynamic. There have been many 

mechanisms developed over the years for building such 

systems, ranging from remote procedure calls, general 

IPC mechanisms like TCP/IP sockets, parallel 

computing techniques based on message passing, 

through to recent work in Web services. However, 

programming still remains a low level and error prone 

task.  

Recently, a number of different groups have 

developed scientific workflow engines that can double 

as programming environments for the Grid. These Grid 

Workflow systems [17][23][5][4][19][11][18][27] 

[10][12] [24][31][32][33][34] allow a user to compose 

a complex virtual application based on pre-existing, in 

some case, legacy components. In this model, 

components typically take input and produce output as 

part of a pipeline. The workflow system schedules the 

computations on the most appropriate (or selected) 

resource only when the inputs are available. Likewise, 

when the output is produced, it is forwarded to the next 

computation in the pipeline. Grid Workflows have 

been applied to diverse fields such as Computational 

Chemistry [5], Ecology [4] and Bioinformatics  [19].  

However powerful, current workflow engines are 

remarkably static – that is, the workflows themselves 

do not typically change at run time. Importantly, 

parallelism is typically specified statically when the 

underlying workflow graph is generated. Because of 

this, there are usually only two ways to specify parallel 

activity in a workflow: 

1. Build a graph with multiple independent sub-

graphs; or 

2. Create a graph that contains logic to spawn parallel 

activities. 

The first of these means that the amount of 

parallelism cannot change once the graph has started 

execution, which is restrictive. Further, if there is a lot 

of parallelism, the graph can become very large and 

difficult to manage. For example, a workflow that 

wishes to process the contents of a database, in 

parallel, must be replicated many times to allow them 

to run in parallel. The underlying graph can become 

very large, but it also contains a high degree of 

redundancy since the same operations are applied to 

each database element. This is the approach taken with 

tools like APST [8]. The second approach can support 

dynamic parallelism, but requires the user to write a 

very complex graph. For example, users must 

explicitly code for parallel execution, and incorporate 

loops that process the contents of the database, provide 

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post on servers or to  
redistribute to lists, requires prior specific permission and/or a fee.  
SC2008 November 2008, Austin, Texas, USA 978-1-4244-2835-9/08 $25.00 ©2008 IEEE



mechanisms that spawn independent calculations and 

then synchronize the results. This process significantly 

complicates the task of writing a workflow. In spite of 

this, the approach is typical of systems like Kepler [17] 

[23] and Taverna [19], for example. 

Over the years we have developed expertise in 

massively parallel parameter sweep workflows, using 

the Nimrod family of tools [3]. Nimrod is a system that 

makes it very easy to build parameter sweep and search 

applications. Users can run an arbitrary executable 

image, varying a number of parameters. Nimrod 

contains tools that perform a complete parameter 

sweep across all possible combinations (Nimrod/G), or 

search using non-linear optimization algorithms 

(Nimrod/O) [1] or experimental design techniques 

(Nimrod/E) [25]. Importantly, the number of jobs, and 

thus the parallelism, can be varied at run time, and the 

Nimrod scheduler places tasks on the available 

resources at run time. 

However, Nimrod was not designed to execute 

arbitrary workflows of the type discussed above. Thus, 

it is difficult to run sweeps over workflows, and 

workflows containing sweeps. Likewise, as illustrated, 

most workflow systems do not support the parallel 

execution of tasks that is supported in Nimrod, and are 

not well suited to parameter sweeps and searches.  

In this paper, we discuss an approach that allows 

workflows to spawn parallel threads dynamically 

without additional programming. Users write the 

simplest possible workflow that captures their business 

logic, and the underlying system provides mechanisms 

to replicate it, at run time, as required. This approach 

makes it possible to use the same workflow with one or 

a million data values, regardless of the nature of the 

logic. It allows a user to mix sweeps over workflows 

and workflows that contain sweeps. 

We have implemented a prototype tool called 

Nimrod/K that demonstrates the new mechanisms. 

Nimrod/K is built on Kepler’s runtime engine 

(Ptolemy) [18]. It uses a dataflow execution model that 

was originally developed for highly parallel dataflow 

computers in the 1980’s, and this provides an 

extremely rich execution mechanism. It leverages a 

number of the techniques developed in the earlier 

Nimrod tools for distributing tasks to the Grid. 

The paper begins with a discussion of existing 

workflow engines, and in particular, discusses Kepler 

(as a typical one). We then discuss the tagged dataflow 

architecture, independently proposed by groups at MIT 

[6] and Manchester [16], and show how this provides 

an ideal mechanism for executing dynamic workflows. 

We then discuss our prototype implementation, 

followed by a few case studies. 

 

2 Grid Programming in Kepler 
 

Kepler is typical of many modern Grid workflow 

systems. It allows scientists from multiple domains to 

design and execute scientific workflows. Scientific 

workflows can be used to combine data integration, 

analysis, and visualization steps into larger, automated 

"scientific process pipelines" and "Grid workflows" 

[23][5]. 

Kepler builds upon the Ptolemy II framework [18]  

developed at the University of California, Berkeley. 

Ptolemy II is a Java-based software framework with a 

graphical user interface called Vergil. The Ptolemy II 

project studies modeling, simulation, and design of 

concurrent, real-time, embedded systems. The focus is 

on assembly of concurrent components.  

The focus of the Ptolemy II system is to build 

models of systems based on the assembly of pre-

designed components. These components are called 

actors: 

“An actor is an encapsulation of parameterized actions 

performed on input data to produce output data. An 

actor may be state-less or state-full, depending on 

whether it has internal state. Input and output data are 

communicated through well-defined ports. Ports and 

parameters are the interfaces of an actor. A port, unlike 

methods in Object-Oriented designs, does not have to 

have call-return semantics. The behaviors of a set of 

actors are not well-defined without a coordination 

model. A framework is an environment that actors 

reside in, and defines the interaction among actors.” 

[18]. 

The interaction styles of actors are captured by 

Models of Computation (MoC). A MoC defines the 

communication semantics among ports and the flow of 

control and data among actors. “Directors” are 

responsible for implementing particular MoCs, and 

thus they define the “orchestration semantics” of the 

workflow. Simply by changing the director of a 

workflow, one can change the scheduling and overall 

execution semantics of a workflow, without changing 

any of the components or the network topology of the 

workflow graph. Two directors that are commonly 

used for Grid programming are the Process Networks 

(PN) and the Synchronous Data Flow (SDF) directors, 

which are based on Kahn Process Networks. 

A Process Network is a directed graph, comprising 

a set of nodes (processes) connected by a set of 

directed arcs (representing FIFO queues). Each process 

executes as a standalone sequential program and is 

wrapped as a Ptolemy II actor. The one-way FIFO 

channels are used for the communication of processes 

and each channel can carry a possibly infinite sequence 

(a stream) of atomic data objects (tokens). Since 

channels have, in principle, unbounded capacity, writes 



to channels are non-blocking, while reads are blocking 

[18]. The SDF domain is a dataflow-based execution 

model in which a sequential execution order of actors 

can be statically determined prior to execution. This 

results in execution with minimal overhead, as well as 

bounded memory usage and a guarantee that deadlock 

will never occur. 

Kepler extends PtolemyII with a significant number 

of actors aimed particularly at scientific applications, 

e.g., for remote data and metadata access, data 

transformations, data analysis, interfacing with legacy 

applications, web service invocation and deployment, 

provenance tracking, etc. Kepler also inherits from 

Ptolemy the actor-oriented modeling paradigm. 

In spite of its significant power, Kepler, and many 

other current workflow systems, do not support 

dynamic parallel execution. Thus, as discussed in the 

introduction, users must explicitly code a workflow to 

cause it to execute elements in parallel – either by 

replicating the workflow statically, or adding looping 

constructs that scatter and gather threads. Both of these 

techniques significantly complicate the workflow and 

obscure the underlying business logic. In the next 

section we discuss a tagged dataflow architecture, and 

show that it provides a much richer execution 

environment for parallel workflows. 

3 The Tagged Dataflow Architecture 

Arvind and Nikhil, at MIT, and separately Gurd and 

Watson at Manchester, proposed a multiprocessing 

architecture that supports parallel execution of 

instruction streams. Both of these architectures execute 

programs as “graphs” that represent a machine 

instruction sequence for a given program. The 

underlying model assumes that an instruction can ‘fire’ 

when it has its operands, unlike the conventional Von-

Neumann model in which an instruction fires when 

selected by the program counter. In a dataflow 

machine, multiple instructions can fire concurrently, 

and provided they are scheduled to different processing 

elements, the program can be executed in parallel. A 

number of dataflow machines were produced, 

however, the additional hardware complexity made 

them uncompetitive with Von Neumann machines of 

the time. 

Figure 1 illustrates the basic principles of a 

dataflow machine. Here, the node of graph represents 

an arbitrary instruction, and tokens contain the value of 

each operand. Instructions, or nodes, consume and 

generate tokens. In step (a) a token arrives on one input 

of an instruction. In step (b) a token arrives on the 

other input. In step (c) the instruction fires, consuming 

the tokens on the inputs, and generating token on the 

output. When connected together, these instructions 

can be used to implement arbitrary complex programs. 

 

 
Figure 1 – instruction sequencing in a dataflow 

machine 

In tagged token machines, tokens contain both a 

data field and a special tag field – or “colour”, which is 

used to separate threads of execution. Importantly, an 

instruction fires when it has a token on each of its 

inputs that have the same colour values. Parallelism is 

implemented simply by creating tokens with different 

colours. Figure 2 shows an example. Here three tokens 

are stored on the left input of the instruction, each with 

a different colour. When tokens of the same colour 

arrive on the other input, the node fires. However, 

because each token has a different colour, three 

instances of the node execute in parallel. The output 

tokens are coloured the same as the inputs, and thus, as 

long as the colours remain distinct, the graph executes 

in parallel. It is worth noting that the machines include 

a number of colour manipulation instructions, and this 

makes it possible to both change the amount of 

parallelism dynamically, but also to change it in 

different parts of the graph. For example, it is not 

uncommon to spawn a number of concurrent threads 

for, say, parallel loops, and then collect the outputs 

back into a sequential instruction steam. 

 

 
Figure 2 – instruction sequencing in a tagged dataflow 

machine 

 

It is not possible to give a full description and all of 

the complexities of the instruction sets of the 

Manchester and MIT machines here. What is important 

is the idea of distinguishing concurrent threads of 

execution by colouring the tokens that flow through the 

graph. The architecture used in this work builds on a 

generalisation of the tagged architecture, and was 

proposed by Abramson and Egan [2]. This 



generalisation allows tokens with the same colour to 

form a queue, and thus the model allows both queued 

(sequential) and tagged (parallel) execution. 

As it turned out these techniques were not 

particularly successful for scheduling individual 

instructions at the machine code level, because the 

hardware and software overheads are substantially 

more than the cost of executing a single instruction. 

Thus, dataflow machines never achieved acceptance as 

a viable parallel architecture. However, the tagged 

dataflow idea can be used to support the type of 

dynamic parallelism discussed in this paper where the 

computations are much more significant than 

individual instructions, and thus the overhead is 

minimal. In the next section we will describe how we 

have used these ideas in the Nimrod/K tool set. 

 

4 Design of Nimrod/K  
 

In Section 2 we introduced the way Kepler (and the 

underlying Ptolemy) supports the use of different 

execution models with the same workflow. One of the 

reasons we have based our implementation on Kepler 

is that this important separation of concerns makes it 

possible to introduce a new execution mechanism 

based on the tagged dataflow execution model whilst 

leveraging the existing infrastructure. Accordingly, we 

have implemented a new Director called the Tagged 

Dataflow Architecture (TDA). The TDA builds on the 

existing SDF and PN directors but tags (or colours) 

tokens to distinguish different threads of execution. We 

envisage the idea could be added to other workflow 

engines with an ability to add new execution 

mechanisms.  The TDA director supports existing 

‘legacy’ actors in the PtolemyII project and the newer 

actors developed for Kepler, making a diverse range of 

actors available.  

In the TDA, threads are identified by adding a 

unique tag to each token. These tag values are 

manipulated by a set of special tag manipulation actors, 

although the tag flow implementation is usually hidden 

from workflow designers. Even though some of 

Ptolemy II data types can be large complex structures, 

the implementation minimises memory usage by using 

pointers to the structure containing each token in the 

thread.  This means the implementation scales well as 

the number of threads increases. 

Underlying the SDF and PN directors are FIFO 

queues located on each of the inputs on an actor.  

Normally, when multiple tokens arrive on an input 

port, they are queued and can be processed when the 

actor is available.  The TDA director follows the same 

procedure, but with a separate queue for tokens with 

different tags.  This means that multiple tokens with 

the same tag value queue up, whereas tokens with 

different tag values can be consumed in parallel.  

Multiple actors cannot read from the same queue 

because they only read from queues with the same tag 

value assigned to them, and no two actors are given the 

same tag value.  This gives the ability to copy actors 

(PtolemyII calls this cloning) and invoke them using 

different tags simultaneously.  Importantly, this 

approach requires no changes to existing actors, which 

are usually unaware that they have been cloned. 

We offer three methods to assign and modify tags 

within a workflow.  The first two are aimed at the 

workflow creator who wishes to parallelize execution 

of a workflow. The third is aimed at the actor 

developer who wishes to develop new actors that 

support parallel threads.  

The first method is transparent to workflow 

designers, and involves a number of new actors that 

generate and consume tagged tokens. For example, the 

Parameter Sweep actor shown in Figure 3 generates 

tokens that are already tagged. One could imagine a 

small set of such actors, such as reduction operators, 

etc. Clearly, this method is preferred because the 

parallelism is implicit in the workflow specification, 

and no explicit tag manipulation is required. Thus, this 

method makes it possible to take existing workflows 

and parallelise them without modification to the core 

logic. The second method provides a special tagging 

actor that adds a tag to a given token.  This actor has 

two inputs, one of which takes a tag and the other takes 

an arbitrary token.  The output of the actor is a token 

with its tag set.   

The third method, which is directed at actor 

developers, provides an API that allows tagging, 

retagging or removing the tag of a token. This means 

that a developer can write complex actors that abstract 

tag management from the workflow creator, but still 

expose sophisticated thread management techniques. 

Likewise, we have provided two methods to access the 

values assigned to the tag from both the workflow 

design and from within an actor’s code.  First, when an 

actor is invoked, the tag value of its input tokens is 

added to the actor’s parameter scope making it 

available in the actor’s parameter options for a 

workflow creator to use.  Second, we provide API 

functions so that actor developers can also access this 

information.  

 

 
Figure 3 – a simple Kepler workflow 

 

Figure 3, shows a simple parameter sweep 

experiment executing over an application called “My 



program”.  In this example, the parameter sweep actor 

produces a number of tokens, each containing one of 

the parameter combinations (stored in a record).  When 

using the TDA director, these tokens are also tagged 

with the value of the record.  For example, if the value 

of the record is “X=1, Y=1”, then the value of the tag 

is “X=1, Y=1”.  The “My program” actor accepts one 

token and produces one token as output, whilst the 

Display actor displays any tokens it receives.  We will 

now compare the different behaviour of the SDF, PN 

and TDA directors as they orchestrate this simple 

workflow.  

The SDF director [22] is a fully synchronised and 

pre-scheduling MoC. It executes its actors in turn until 

every actor reports it is unable to execute.  The PN 

director, on the other hand, [22] activates every actor 

simultaneously and blocks an actor when there are no 

tokens available.  Therefore, when executing the 

workflow in Figure 3 under the PN director, all actors 

are activated simultaneously and the “My program” 

and the Display actors are blocked immediately.  As 

the parameter sweep actor produces tokens, the “My 

program” actor proceeds to process the tokens one at a 

time.  Likewise the Display actor displays the tokens as 

they arrive.  As it turns out, both the SDF and the PN 

directors behave in similar ways for this simple 

workflow.  

 

 
Figure 4 – The TDA director executing the simple 

workflow 

 

Whilst the TDA director uses the same requesting 

technique as SDF, it also has the ability to create new 

threads for each of the tokens that it generates.  In this 

example, the TDA director creates a single thread for 

the parameter sweep actor, which sequentially sends 

tokens to the “My program” actor.  However, since 

each output token from the parameter sweep actor is 

tagged with a different value, multiple copies of “My 

program” execute in parallel.  Importantly, the output 

of the “My Program” actor is tagged with the same 

value as its input, and thus, each “My program” thread 

communicates with a different Display actor thread. 

The effect of this is that the TDA director creates a 

separate thread for each of the parameter combinations 

and, as shown in Figure 4, they each display in parallel. 

It is important to highlight that Figure 4 depicts the 

run-time behaviour of the workflow, whereas, Figure 3 

shows the workflow as designed.  

A more complex workflow would probably gather 

or reduce the outputs of “My Program” together into a 

single thread, possibly reordering them into a single 

queue based on their tag values. This is analogous to a 

scatter-gather operation in a vector processor or a 

parallel loop instruction in a programming 

environment, and achieves the same sort of parallel 

execution.  

Comparing directors shows the concurrency benefit 

of using the TDA director and how actors remain 

unmodified in all environments. Many of the Grid 

actors in Kepler do not provide information on the 

consumption and firing rate of tokens.  In the example 

given in Figure 3, it may not be clear how many tokens 

the “My program” actor needs to consume nor how 

many tokens it will eject for each firing and if these 

numbers remain consistent.  As discussed in [22], the 

SDF director determines a schedule for a workflow at 

the start of the execution.  Because of this, it is unable 

to handle non-deterministic actors that change their 

token usage behaviour during the execution while the 

PN director adapts to the changing state.  In this sense, 

the TDA director is similar to the PN as its schedule is 

not fixed.   

State fullness is another attribute of an actor that 

needs to be considered.  State fullness is where an actor 

holds information from a previous firing making the 

order of tokens entering the actor important.  This can 

also happen indirectly through shared resources. These 

types of actors are safe using the SDF and PN directors 

as there is only one copy of the actor on the workflow.  

These actors are supported with the TDA director, but 

may be of limited value as they may not be able to be 

cloned because of concurrency issues, and thus, should 

be used with caution.   The TDA environment allows 

both the actor developers and the workflow designers 

to specify if and when an actor can be cloned.  Issues 

relating to state and parallelism will be discussed in 

further work. 

 

5 Implementation Details 
 

Figure 5 shows the structure of our prototype director 

implementation.  There are three main components: the 

token scheduler, the actor manager and the director. 

The token scheduler’s role is to decide which tag an 

actor should process next.  The actor manager is 



responsible for the execution of an actor, and for 

maintaining all of its copies.  Like all directors in 

PtolemyII and Kepler, the TDA director maintains the 

execution of the workflow and reports to the 

workflow’s calling function.   

The token scheduler is responsible for deciding the 

actor firing order and the assignment of tokens to actor 

clones. The scheduler is notified of all token, 

movements and is responsible for deciding the number 

of actor copies that should be cloned at any time. This 

dynamic scheduling is different from the static 

scheduler used by the SDF director and the blocking 

method used in the PN director. We have also added a 

actor base class with an API that allows the scheduler 

to query the actor’s resource requirements. A scheduler 

needs to consider resource availability to improve its 

scheduling even when using local resources.  For 

example, a workflow may run a CPU intensive 

simulation package such as MATLAB which might be 

executed on a multi-processor.  In this scenario, it is 

important for the scheduler to know how many 

MATLAB computations it can execute concurrently.  

Further to this, MATLAB might appear more than 

once in the workflow which needs consideration when 

scheduling these computations concurrently.  It is the 

scheduler’s responsibility to coordinate shared 

resources across the workflow. 

 
Figure 5 - Object associations 

 

The prototype token scheduler is based on a simple 

outstanding request queue where an entry is added 

when a token arrives on any actors’ input ports.  The 

entry holds a reference to the actor and a reference to 

the token’s tag’s value, and ensures that all outstanding 

requests are processed before terminating the 

workflow.  Storing references to these objects does not 

create inconsistency issues because actors are never 

changed during execution and tags are immutable in 

this environment.  Only one outstanding request is kept 

per actor and tag combination to avoid unneeded 

multiple requests that will increase the queue size.  

This has the most noticeable effect when an actor 

requires more than one token to fire, but will only need 

a single firing request.  Storing requests this way 

reduces the memory requirement of the queue because 

the actor only needs to be flagged once to execute.  

When an actor finishes firing and reports that it can fire 

again, the token scheduler decides whether to requeue 

this actor and tag combination by checking if there are 

any outstanding tokens.  The only exception are actors 

that are defined as “source” actors which always 

generate a new request after a successful fire until the 

actor reports it is no longer able to fire.  Our prototype 

token scheduler currently clones as many actors as 

required to consume all outstanding tokens at that time.  

However, this strategy may generate a large demand on 

resources including memory, in both the number actors 

and the number of active tokens, and on shared 

resources.  Similar issues have been addressed in the 

past with the k-bounded loops work of Culler [9] and 

we plan to integrate some of these ideas in the near 

future. 

Actor managers are responsible for maintaining the 

actors on the workflow.  There is one actor manager 

for each actor on the workflow.  They provide all the 

functions required to maintain an actor, including 

functions that manage actor cloning, token inputs and 

outputs, initialisation and cleaning up.  Importantly, 

actors do not require modification to work under the 

TDA director because the actor manager performs all 

the functions required.  These functions include the 

interface for a scheduler to query an actor’s resource 

needs. The actor manager adds the tag’s content 

(assigned by the token scheduler) to the actor’s 

parameter scope and it ensures outgoing tokens have 

the correct tag for the actors that do not manage the tag 

itself. 

The TDA director is invoked in the same way 

SDF and PN directors. Importantly, it is built on the 

same director interface as SDF and PN, and this allows 

it to interact seamlessly with the Ptolemy environment.  

It also has the functions to maintain synchronisation 

betweens the threads in its environment. 

An important design feature of Kepler (and 

Ptolemy) is the use of multiple directors on the same 

workflow by using a hierarchical layout.  This is 

implemented using special “Composite Actors” that 

supports nesting of directors.  Just as PN directors 

allow an SDF controlled sub-graph actor in its 

workflow, a TDA controlled sub-graph can also be part 

of a PN controlled workflow.  Further to this, it is 

possible to have an SDF sub-graph inside a TDA 

TDA Director 

Nimrod Actor Manager 
Nimrod Actor Manager 

Actor Manager 

Token 
Scheduler 

Original 
Actor 

 
  

Actor 
Copies  

Token 
Queues 



workflow.  There are rules governing which directors 

can be nested as a sub-graph on a workflow, which are 

explained in [15].  The TDA director closely resembles 

PN director on which combinations are possible with 

one exception, it is possible to have TDA controlled 

sub-graph as part of an SDF controlled workflow. This 

is because the TDA director does not block on reads 

and can release control back to the SDF director when 

no internal actor is active.  To complicate the issue, 

placing a PN director inside a TDA controlled 

workflow blocks the TDA director from releasing 

control back to an outlying SDF controlled workflow.  

This is because PN directors do not relinquishing 

execution until it is told there are no more tokens at 

which point it terminates completely.  We are currently 

exploring the semantics of nesting TDA with other 

directors and will produce a set of templates with 

clearly defined semantics for workflow developers. 

 

6 Case Studies 
 

In this section we demonstrate the effectiveness of our 

work using two case studies in theoretical chemistry 

and cardiac cell modelling. We have deliberately 

chosen fairly simple workflows as demonstrators in 

this paper to avoid complicating the description of the 

problem domains and the workflows. However, the 

same techniques have been applied to more complex 

examples in quantum chemistry, and will be reported 

in the future. 

6.1 Case study 1 – Quantum Chemical 

Calculations 

The first experiment concerns quantum chemical 

models – based on the Schrödinger equation – of 

assemblies of atoms as found in large biomolecules.  

To date, it has been impossible to use quantum 

methods on such large molecules because the 

computational time becomes prohibitive.  

This work involves a set of approximations that 

replace large multi-atom systems with a single 

“pseudo” atom that has special theoretical properties 

that make it an analogue for the larger system. The 

solution involves computing a potential surface for the 

pseudo atom, called a pseudo-potential, and using this 

in the quantum calculations. A pseudo-potential does 

not describe a real chemical system, but can be used to 

approximate, and replace, a much larger molecular 

system. The result is that the quantum chemical 

calculations are much simpler, and faster, than if the 

original molecule had been used, opening the 

possibility of using quantum methods on very large 

systems. The details can be found in [28][29][30]. In 

our previous work we used Nimrod/G to schedule and 

execute the calculations. 

The workflow shown in Figure 6 depicts the 

computation, which involves the execution of the 

GAMESS quantum chemistry package [26][21] a 

number of times, across a search space defined by 4 

parameters (A, B, C and D). Here parameters A, B, C 

and D are to be determined that will provide the best fit 

between the real atomic system and target properties of 

the pseudo atom. The experiment used the results of 

the very large sweep over the A, B, C, D parameter 

space. 

 
Figure 6 – GAMESS Workflow 

 

The workflow shows 4 separate executions of 

GAMESS for each parameter set. The Parameter 

Sweep actor computes all combinations of the A, B, C 

and D, and builds a record for each of these 

combinations. They are used as inputs to the GAMESS 

actors, and the outputs are sent into an actor that 

computes the Root Mean Square error of the cost 

function. This is a measure of how well a particular 

pseudo potential surface fits calculations of a real 

molecule. The results are re-ordered and plotted using 

a Graph actor. Figure 7 shows the results across two of 

the parameters. The remaining parameter can be varied 

to produce multiple images, which can then be 

composed into a movie. 

In the experiment we executed the workflow with 

three different Directors – SDF, PN and TDA. We 

highlight the simplicity of changing the execution 

semantics – all we had to do to change them was to 

swap out one director on the Vergil canvass and 

replace it with another one. Figure 8 shows the 

performance of the workflow under each of the 

Directors running on the testbed shown in Table 1. All 

compute resources have little communication latency 

(<1ms) and the data sets were very small and such had 

a negligible affect on the experiment time.  The SDF 

director only executed one job at a time, as expected, 



and took a total of 15:34:20. The PN director was able 

to exploit the static parallelism in the workflow, and 

executed up to 4 jobs at a time, taking 05:18:38. The 

TDA director was able to execute as many jobs 

together as there were processors available, and took a 

total of 00:29:19. Thus, the PN ran approximately 3 

times faster than the SDF, and the TDA ran nearly 32 

times faster than the SDF. The reason the PN times are 

not exactly 4 times faster is because the director waits 

on all 4 GAMESS-Nimrods to finish before submitting 

the next 4, and since each of them takes a different 

amount of time, time is lost in synchronising them. The 

graph in Figure 8 shows the number of jobs running at 

any time, and shows that the TDA Director peaks at 45 

jobs. An initial observation is that the experiment used 

less than the maximum number of available processors 

(274) even though there were in principle sufficient 

jobs (484) to saturate the machines. This is because the 

jobs ran for only a few minutes allowing them to finish 

before all jobs were scheduled. Thus, the peak number 

of processors was only 45, and the average speedup 

only 32. We plan to optimize the job startup overheads 

in future implementations, and this will improve the 

speedup for experiments that have short running jobs. 

 

 
Figure 7 – Output of the GAMESS experiment 

 

 
 

Figure 8 – performance results. 

 

Machine # 

Procs 

Hardware Operating 

System 

160 Intel(R) Xeon(R) 

E5310  @ 1.60GHz 

East 

64 Intel(R) Xeon(R) 

5160  @ 3.00GHz 

CentOS 

release 5 

Mahar 50 Intel(R) Pentium(R) 

4 CPU 3.00GHz 

Debian 

GNU/Linux 

3.1 

Table 1 – Testbed constitution 

6.2 Case study 2 – Cardiac cell 

simulation 

The second case study concerns a MATLAB model of 

a rabbit heart. This simulation solves a set of coupled 

ordinary differential equation that describe the various 

ion flows in a single cardiac cell. As in the previous 

case study, we wish to explore the behaviour of the 

model by varying a number of parameters, and then 

compare the ion levels (in particular the Ca
2+

 

concentrations) with the results of real physiological 

experiment. [25]. An objective cost function, which 

indicates the solution quality for different parameters, 

is computed as moduli of the differences between 

computed metabolic-experimental values. 

This case study highlights the TDA director’s 

feature of accessing the tag’s value and how it can be 

used to simplify workflows.  We use the MATLAB 

actor packaged in the Kepler project to invoke 

MATLAB.  Figure 9 shows the experiment workflow 

as set up for our new TDA director.  The parameter 

sweep passes parameter values, as tokens with 

different tags, to the MATLAB actor.  When executed 

under TDA, this causes multiple instances of the 

MATLAB actor to be cloned at run time. The TDA 

director adds the values of the parameters into the 

actor’s “Parameter Scope” which is then substituted 

into the MATLAB script.  However, with the SDF and 

PN directors, each parameter has to be passed into a 

parameter port, as shown in Figure 10, which is 

implemented with a CompositeActor.  This 

CompositeActor only contains the MATLAB actor, 

which now has the parameters in scope, and an internal 

SDF director.  This new way of adding parameters to 

actors using tag tokens makes the construction of 

workflows simpler.  These methods of passing the 

parameters to the actor differ from the GAMESS case 

study which used Nimrod to pass the parameters into 

the script. 



 
Figure 9 – MATLAB workflow with the TDA 

director  

 
Figure 10 – MATLAB workflow with an SDF or 

PN director 

 

This experiment was performed on a server that has 

two Intel(R) Xeon(R) E5310 @ 1.60GHz Quadcore 

processors allowing 8 processes to run 

simultaneuously.  Using the SDF and PN directors, as 

expected, all the MATLAB jobs ran sequentially for 

1:43:26 and 1:44:27 respectively.  With the TDA 

director, all 64 MATLABs ran concurrently finishing 

the experiment in 16:54, delivering a speedup of 6.1.  

The value of the objective cost function is graphed 

against two of the parameters in Figure 11. 

Interestingly, this graph was produced using a standard 

Kepler actor for MATLAB, demonstrating the 

significant functionality available in an existing 

workflow system. 

 

 
 

Figure 11 – Output of the MATLAB experiment 

 

7 Conclusions 
 

In this paper we have discussed the design and 

implementation of a new orchestration mechanism for 

scientific workflows. The scheme is based on 

mechanisms that were originally designed for parallel 

dataflow computers. When used in this mode, they 

allow a workflow to dynamically spawn threads of 

computation transparently from the workflow design, 

and this greatly simplifies the work for the user over 

existing workflow systems.  

We have built a prototype version in Kepler, and 

have been able to reuse all of the existing Kepler code 

by simply adding a new director. This is very attractive 

because it now only allows us to reuse an existing 

workflow system, but also all of the components 

(actors) that have been developed to date. 

We have illustrated the effectiveness of the scheme 

using two examples, both of which had been 

implemented using our Nimrod software previously. 

The new system is significantly more flexible and 

allows workflows of arbitrary complexity to be 

implemented. 

The current system is only a prototype, and has 

illustrated the functionality and potential for our 

approach. However, systems like Kepler, allow 

components to pass more complex data types like files. 

File transport between Grid nodes adds a level of 

complexity and we will explore this in the near future. 

Further, the scheduling system in the current prototype 

does not have the sophistication of some of the other 

techniques we have implemented in Nimrod. We plan 

to explore more complex scheduling approaches, such 

as those discussed in [7].  
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